Tag Archives: spore

autoclave

10 Treatment Methods to Reduce Mold in Cannabis

By Ketch DeGabrielle
3 Comments
autoclave

As the operations manager at Los Sueños Farms, the largest outdoor cannabis farm in the country, I was tasked with the challenge of finding a yeast and mold remediation treatment method that would ensure safe and healthy cannabis for all of our customers while complying with stringent regulations.

While outdoor cannabis is not inherently moldy, outdoor farms are vulnerable to changing weather conditions. Wind transports spores, which can cause mold. Each spore is a colony forming unit if plated at a lab, even if not germinated in the final product. In other words, perfectly good cannabis can easily fail microbial testing with the presence of benign spores.

Fun Fact: one square centimeter of mold can produce over 2,065,000,000 spores.

If all of those landed on cannabis it would be enough to cause over 450 pounds of cannabis to fail testing, even if those spores remained ungerminated.

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

It should also be known that almost every food item purchased in a store goes through some type of remediation method to be considered safe for sale. Cannabis is finally becoming a legitimized industry and we will see regulations that make cannabis production look more like food production each year.

Regulations in Colorado (as well as Nevada and Canada) require cannabis to have a total yeast and mold count (TYMC) of ≤ 10,000 colony forming units per gram. We needed a TYMC treatment method that was safe, reliable, efficient and suitable for a large-scale operation. Our main problem was the presence of fungal spores, not living, growing mold.

Below is a short list of the pros and cons of each treatment method I compiled after two years of research:

Autoclave: This is the same technology used to sterilize tattoo needles and medical equipment. Autoclave uses heat and pressure to kill living things. While extremely effective, readily available and fiscally reasonable, this method is time-consuming and cannot treat large batches. It also utilizes moisture, which increases mold risk. The final product may experience decarboxylation and a change in color, taste and smell.

Dry Heat: Placing cannabis in dry heat is a very inexpensive method that is effective at reducing mold and yeast. However, it totally ruins product unless you plan to extract it.

autoclave
An autoclave
Image: Tom Beatty, Flickr

Gamma Ray Radiation: By applying gamma ray radiation, microbial growth is reduced in plants without affecting potency. This is a very effective, fast and scalable method that doesn’t cause terpene loss or decarboxylation. However, it uses ionizing radiation that can create new chemical compounds not present before, some of which can be cancer-causing. The Department of Homeland Security will never allow U.S. cannabis farmers to use this method, as it relies on a radioactive isotope to create the gamma rays.

Gas Treatment: (Ozone, Propylene Oxide, Ethylene Oxide, Sulfur Dioxide) Treatment with gas is inexpensive, readily available and treats the entire product. Gas treatment is time consuming and must be handled carefully, as all of these gases are toxic to humans. Ozone is challenging to scale while PPO, EO and SO2 are very scalable. Gases require special facilities to apply and it’s important to note that gases such as PPO and EO are carcinogenic. These methods introduce chemicals to cannabis and can affect the end product by reducing terpenes, aroma and flavor.

Hydrogen Peroxide: Spraying cannabis plants with a hydrogen peroxide mixture can reduce yeast and mold. However, moisture is increased, which can cause otherwise benign spores to germinate. This method only treats the surface level of the plant and is not an effective remediation treatment. It also causes extreme oxidation, burning the cannabis and removing terpenes.

Microwave: This method is readily available for small-scale use and is non-chemical based and non-ionizing. However, it causes uneven heating, burning product, which is damaging to terpenes and greatly reduces quality. This method can also result in a loss of moisture. Microwave treatment is difficult to scale and is not optimal for large cultivators.

Radio Frequency: This method is organic, non-toxic, non-ionizing and non-chemical based. It is also scalable and effective; treatment time is very fast and it treats the entire product at once. There is no decarboxylation or potency loss with radio frequency treatment. Minimal moisture loss and terpene loss may result. This method has been proven by a decade of use in the food industry and will probably become the standard in large-scale treatment facilities.

Steam Treatment: Water vapor treatment is effective in other industries, scalable, organic and readily available. This method wets cannabis, introducing further mold risk, and only treats the product surface. It also uses heat, which can cause decarboxylation, and takes a long time to implement. This is not an effective method to reduce TYMC in cannabis, even though it works very well for other agricultural products

extraction equipment
Extraction can be an effective form of remediating contaminated cannabis

Extraction: Using supercritical gas such as butane, heptane, carbon dioxide or hexane in the cannabis extraction process is the only method of remediation approved by the Colorado Marijuana Enforcement Division and is guaranteed to kill almost everything. It’s also readily available and easy to access. However, this time-consuming method will change your final product into a concentrate instead of flower and usually constitutes a high profit loss.

UV Light: This is an inexpensive and readily available method that is limited in efficacy. UV light is only effective on certain organisms and does not work well for killing mold spores. It also only kills what the light is touching, unless ozone is captured from photolysis of oxygen near the UV lamp. It is time consuming and very difficult to scale.

After exhaustively testing and researching all treatment methods, we settled on radio frequency treatment as the best option. APEX, a radio frequency treatment machine created by Ziel, allowed us to treat 100 pounds of cannabis in an hour – a critical factor when harvesting 36,000 plants during the October harvest.

Microbiology 101 Part One

By Kathy Knutson, Ph.D.
No Comments

I have been studying microorganisms for over 35 years, and the elusive critters still fascinate me! Here in Microbiology 101, I write about the foundation of knowledge on which all microbiologists build. You may have a general interest in microbiology or have concerns in your operation. By understanding microbiology, you understand the diversity of microorganisms, their source, control of microorganisms and their importance.

Part 1

The term microbiology covers every living being we cannot see with the naked eye. The smallest microbe is a virus. Next in size are the bacteria, then yeast and mold cells, and the largest microbes are the protozoans. The tiny structure of a virus may be important in the plant pathology of cannabis, but will not grow in concentrates or infused products. A virus is not living, until it storms the gate of a living cell and overtakes the functions within the cell. Viruses are the number one cause of foodborne illness, with the number one virus called Norovirus. Think stomach flu. Think illness on cruise ships. Viruses are a food service problem and can be prevented by requiring employees to report sickness, have good personal hygiene including good hand washing, and, as appropriate, wear gloves. Following Good Manufacturing Practices (GMPs) is critical in preventing the transfer of viruses to a product where the consumer can be infected.

The petri dishes show sterilization effects of negative air ionization on a chamber aerosolized with Salmonella enteritidis. The left sample is untreated; the right, treated. Photo courtesy of USDA ARS & Ken Hammond

The largest microbial cell is the protozoan. They are of concern in natural water sources, but like viruses, will not grow in cannabis products. Control water quality through GMPs, and you control protozoans. Viruses and protozoans will not be further discussed here. Bacteria, yeast and mold are the focus of further discussion. As a food microbiologist, my typical application of this information is in the manufacturing of food. Because Microbiology 101 is a general article on microbiology, you can apply the information to growing, harvesting, drying, manufacture of infused products and dispensing.

It is not possible to have sterile products. Even the canning process of high temperature for an extended time allows the survival of resistant bacterial spores. Astronauts take dehydrated food into space, and soldiers receive MREs; both still contain microbes. Sterility is never the goal. So, what is normal? Even with the highest standards, it is normal to have microbes in your products. Your goal is to eliminate illness-causing microorganisms, i.e. pathogens. Along the way, you will decrease spoilage microbes too, making a product with higher quality.

Petri dish containing the fungus Aspergillus flavus. It produces carcinogenic aflatoxins, which can contaminate foods and cause an invasive fungal disease.
Photo courtesy of USDA ARS & Peggy Greb.

Yeast and mold were discussed on CIJ in a previous article, Total Yeast & Mold Count: What Cultivators & Business Owners Need to Know. Fuzzy mold seen on the top of food left in the refrigerator too long is a quality issue, not a safety issue. Mold growth is a problem on damaged cannabis plants or cuttings and may produce mycotoxin, a toxic chemical hazard. Following Good Agricultural Practices (GAPs) will control mold growth. Once the plant is properly dried, mold will not grow and produce toxin. Proper growing, handling and drying prevents mycotoxins. Like mold, growth of yeast is a quality issue, not a safety issue. As yeast grow, they produce acid, alcohol and carbon dioxide gas. While these fermentation products are unwanted, they are not injurious. I am aware that some states require cannabis-infused products to be alcohol-free, but that is not a safety issue discussed here.

What are the sources of microorganisms?

People. Employees who harvest cannabis may transfer microorganisms to the plant. Later, employees may be the source of microbes at the steps of trimming, drying, transfer or portioning, extract processing, infused product manufacture and packaging.

Ingredients, Supplies and Materials. Anything you purchase may be a source of microorganisms. Procure quality merchandise. Remember the saying, “you get what you pay for.”

Environment. Starting with the outdoors, microbes come from wind, soil, pests, bird droppings and water. When plants are harvested outdoors or indoors, microbes come from the tools and bins. Maintain clean growing and harvesting tools in good working condition to minimize contamination with microbes. For any processing, microbes come from air currents, use of water, and all surfaces in the processing environment from dripping overhead pipes to floor drains and everything in between.

In Part 2 I will continue to discuss the diversity of microorganisms, and future articles will cover Hazard Analysis and Critical Control Points (HACCP) and food safety in more detail. What concerns do you have at each step of operations? Are you confident in your employees and their handling of the product? As each state works to ensure public health, cannabis-infused products will receive the same, if not more, scrutiny as non-cannabis food and beverages. With an understanding and control of pathogens, you can focus on providing your customers with your highest quality product.

Preventing Yeast and Mold with Two-Way Humidity Control

By Aaron G. Biros
No Comments

When a grower harvests their cannabis plants, they process it by drying, curing and trimming the plant material. Dried cannabis ready for the consumer can often sit on retail shelves for months before it is purchased. According to the Cannabis Safety Institute, trimming is the processing stage with the highest level of human handling, and thus presents the most significant opportunities for microbiological contamination.

The Cannabis Safety Institute recommends workers handling dry cannabis wash their hands periodically, generally conform to food safety rules and wear gloves at all times. In addition to these tips, looking at relative humidity is a good tool to mitigate contamination concerns like the growth of yeast and mold spores. Mold spores can grow quickly when there is enough moisture, but if the cannabis is dry enough, mold spores cannot develop.

Growers controlling the relative humidity of their finished product in the past often placed an orange peel or a wet cotton ball in a jar with dried cannabis to retain the weight from water and keep it from over-drying. Those tactics have since been improved upon using modern technology.

Water activity is a measure of the relative humidity immediately adjacent to the product, according to Bob Esse, vice president of research at Boveda. “Cannabis’ relative humidity will reach equilibrium with the surrounding environment over time, which is why it is so critical to manage this adjacent atmosphere,” says Esse. “Moisture content is the total water present in the product and is a variable that changes in its relationship to water activity from one strain or type of product to the next.”

Back in 1997, Boveda first patented two-way humidity control. For the last 20 years, that company has made humidity control products for packaging in a variety of industries, like wooden musical instruments, pharmaceuticals, medical devices, electronics, tobacco, photos and documents and perhaps most notably for keeping cigars at the right humidity level in a humidor. According to Charles Rutherford, business development director at Boveda, he saw people buying their products meant for cigars, but using them with cannabis. About six years ago, they started developing a product specifically for the cannabis market.

The science behind it is relatively simple, says Rutherford. “Certain salts saturated in water can naturally regulate humidity- we just developed a cannabis-specific humidity level and patented the packaging around it that purifies the water and can come in direct contact with cannabis,” says Rutherford. “Using water activity meters and a moisture isotherm test, we determined the most appropriate range of humidity levels that cannabis will remain stable.” That range turned out to be between 59% and 63% humidity level for the properties in dried cannabis to stay the same.

According to Rutherford, it is a little more complex than just a range to stay in. “There are different humidity levels that certain strains prefer, but there are personal preferences, regions and other factors to consider when determining the levels of humidity ideal for cannabis,” says Rutherford. “We wanted to understand what people consider to be perfect.” In their research they found that depending on the region of the country, that humidity level varies considerably. “Using a water activity meter we could tell exactly what people prefer,” says Rutherford. Colorado, for example, prefers significantly drier cannabis than the Pacific Northwest, according to their findings.

Right now, Boveda has two-way humidity controllers set at 62%, 58% and soon they will have an under 50% option (appealing to the Colorado market). Using a device to accurately control the humidity level in cannabis can help growers and retailers prevent contamination from the biggest source of concern: water. “There is a ton of talk about pesticide contamination, but the reality is even if the flower is grown organically, you can still encounter safety problems when the moisture level is off,” says Rutherford. From a medical perspective, keeping dried cannabis at an ideal humidity level helps stabilize the properties of it, maintaining the medical efficacy. “If this is something people use for a medicine, it should be at an ideal condition,” says Rutherford. “Quantifying and understanding what humidity level is right is what we are helping accomplish.” For patients with compromised immune systems that need safe, consumable cannabis, a humidity control device can help prevent contamination and ensure a certain degree of safety in their medicine.

On a retail level, the packaging insert can extend the shelf life of products and maintain the quality. “The world has known for decades that 70% humidity level for cigars is ideal,” says Rutherford. “The cannabis world hasn’t had a moisture standard or understanding of what is proper until very recently.” That 62% humidity level determined after commissioned testing is a good standard to reference when determining your own ideal humidity level.

Growers also recognize the value in keeping their cannabis at the right humidity level beyond the obvious safety concerns. “As cannabis dries out and loses its humidity, the overall weight is reduced,” says Rutherford. “Precision humidity control gives a uniform humidity throughout the flower, leaving out the mystery for growers and maintaining weight, meeting the nexus between quality and weight.” According to Rutherford, growers have an incentive to package their cannabis a little on the wet side. “Because it weighs the most when wet, it is sold by weight and it will lose moisture over time, the incentive to deliver product that will dry out over time- that can create a lot of problems by having high moisture content.” For the first time ever, people can dramatically extend the shelf life of dried cannabis, instead of letting products naturally deteriorate and go bad over time. “For the first time ever, it allows you to extend the shelf life of dried cannabis for aging cannabis like wine and cigars,” says Rutherford.

The data from that Cannabis Safety Institute report, collected by AquaLab and CannaSafe Analytics using a vapor sorption analyzer, shows a cutoff of 65% relative humidity. These findings give the industry a lot of guidance in working to reduce the amount of yeast and mold contamination, says Bob Esse. “If your dried cannabis is above 65% relative humidity and you are a retailer, you should send that product back to the grower because it wasn’t dried properly, is vulnerable to mold and yeast spores and thus not safe for the consumer,” says Esse.

Pointing to the report, Esse says foods with high moisture content are able to support robust microbial population growth, which can lead to bacterial and fungal infections. “Water activity is what impacts whether microorganisms can grow or not.” By using two-way humidity control technology, growers and retailers can mitigate risks of contamination, improve quality and extend the shelf life of their products.