Tag Archives: soil

How To Select The Best Monitoring System For Your Cannabis Greenhouses

By Rob Fusco
No Comments

Maintaining an environment that supports cultivation and keeps plants healthy is not an easy task. In cannabis growing, there are a variety of factors that greenhouse managers and personnel must monitor to ensure that their plants are in a healthy environment that fosters growth and development. Temperature, humidity, lighting and CO2 levels are a few of the conditions that need to be tailored to each cannabis greenhouse operation. However, it can be difficult to constantly monitor the status of your equipment and the greenhouse environment, especially after hours or during the off-season.

A remote monitoring system that’s properly selected and installed can help greenhouse managers keep their cannabis plants healthy, multiply their yields and increase return on investment. This type of system also helps operators identify patterns and trends in environmental conditions and get insight into larger issues that can prevent problems before they arise.

Cloud-based monitoring system base unit in weatherproof enclosure

Here are some tips on key conditions to monitor and what you need to consider when selecting a monitoring system for your cannabis greenhouse operation:

Temperature

Temperature plays a crucial role in any cannabis grow operation. The climate in your greenhouse must be warm enough to nurture photosynthesis and the growth of cannabis plants. Setting the incorrect temperature will significantly impact the potential yield of the plant and the rate at which it develops. A temperature too low will slow the growth of the cannabis, but too hot can lead to heat stress for your plants. The ideal temperature for a standard greenhouse is between 70 and 80 degrees Fahrenheit. However, depending on the stage of plant and desired growth densities, the temperature of the greenhouse needs to be adjusted accordingly.

Humidity Levels

Humidity directly affects plant photosynthesis and transpiration, so controlling humidity is vital in greenhouse growing. The ideal relative humidity (RH) for cannabis growth is around 60%. A low humidity level can cause water to evaporate too quickly for photosynthesis, while a humidity level that is too high can cause poor growth and possible mold and fungal disease. Monitoring the moisture content in the air of your greenhouse will help the plants during the transpiration process, increasing absorption of nutrients and overall health of the cannabis. 

Lighting

Your cannabis may be getting an abundance of natural light during the summer months, but maintaining adequate sunlight during the winter months can be a challenge. As a solution to this, many greenhouse managers equip their facilities with additional lights to supplement natural light during off-seasons or off-hours. To achieve the best possible yield, a cannabis plant in the budding stage should receive twelve hours of light each day, while other stages could require additional lighting. For example, the growth stage could require your cannabis to be exposed to sunlight for up to eighteen hours a day.

CO2 Levels

Like any other plant, cannabis requires CO2 to breathe. Greenhouse managers must set and monitor the CO2 levels in their facility to make sure that there is an adequate amount for the plants to develop, grow and be healthy. The amount of carbon dioxide required for your cannabis depends of the size of the facility and the amount of light the plants are receiving. However, a standard grow area for cannabis can maintain a CO2 range from 1000 to 1500 parts per million (PPM). A level below that threshold can result in slower growth of the plants, while a level above would lead to unused and wasted CO2.

Soil moisture sensor

Irrigation and Soil Moisture

One way to ensure a good yield from your cannabis is to water it regularly and monitor your soil moisture. Overwatering your plants can have the same effect, if not worse, than letting the soil become too dry. Plants’ roots need oxygen to survive, unlike leaves that breathe CO2, and when the soil is waterlogged the roots can’t provide their function. The lack of oxygen interferes with the roots’ nutrient uptake and photosynthesis causing the cannabis plant to wilt. The exact moisture content of the soil depends on the size of your greenhouse, temperature and humidity. Whether you hand water or are using a drip irrigation system, being aware of your soil moisture is vital to the long-term health of your cannabis.

Air Circulation

Your greenhouse environment should mimic the ideal conditions in which cannabis plants flourish. With an indoor facility, you have the ability to control air circulation by venting hot air out and blowing fresh air in. Creating a circulation of air inside your greenhouse will increase your cannabis plant’s growth speed and yield. Additionally, an exhaust system helps control the temperature and humidity, while also preventing the invasion of mold and pests that thrive in hot, stagnant air.

Greenhouse Security

When growing something of value, like cannabis, there will always be a threat of intruders. Whether your greenhouse is in a populated area or around hungry wildlife, any intruder could be detrimental to your overall yields and profit. Remote monitoring systems can give you peace of mind and instantly alert you when there is an unwanted presence in your greenhouse.

Knowing all the possible threats to your cannabis greenhouse helps you evaluate your specific needs, and ultimately identify the proper remote monitoring system.

Selecting the Right Monitoring System

Other factors to consider when choosing a monitoring system right for your operation include:

  • Base unit and sensors
  • Wireless or hardwired sensors
  • Communications to your site (Phone, cellular, Wi-Fi, etc.)
  • Alarm notification
  • Programming and status checks
  • Data logging
  • Return on investment

Base Units and Sensors

Each condition in your greenhouse that you want to monitor requires its own input on the base unit of the monitoring system. You must match your needs with the number of inputs available. A good fit for a smaller cannabis greenhouse may be a lower-cost, non-expandable monitoring system. However, larger facilities have many monitoring points and more people to alert when there’s a problem. If your cannabis operation is poised for growth, purchasing an expandable system could add value to the initial purchase because you wouldn’t have to replace your entire system in the future.

Your monitoring system should also have an internal rechargeable battery backup to ensure continuous monitoring and alerts in the event of a power outage. It is also recommended to have each base unit in a sheltered enclosure to protect it from moisture, dirt and other hazards.

Placement of sensors is also crucial. For example, temperature sensors in your greenhouse should be placed throughout the facility. They should be next to your thermostat and in the center of your greenhouse, preferably away from direct sunlight.

Wireless or Hardwired Sensors

Remote monitoring systems offer the option to have sensors hardwired directly to the base unit or sensors wirelessly connected. A hardwired monitoring system connects the sensors to the base device with wires. Generally, trenching long distances for wires is time consuming and costly. So alternatively, a wireless system uses built-in radio transmitters to communicate with the base unit. Some monitoring systems can accommodate a combination of hardwired and wireless sensors.

Communications to Your Site

Monitoring devices that use cellular communications must be registered on a wireless network (like Verizon or AT&T) before you can send or receive messages. Because cellular devices perform all communications over a wireless network, it is important that there be sufficient signal strength at the greenhouse. It is a good idea to check the signal quality in the area before purchasing a cellular product. If the cellular network has less than desirable coverage, it is possible to install an external antenna to help increase cellular signal.

Alarm Notifications

When monitoring systems identify a change in status, they immediately send alerts to people on the contact list. If you don’t want all of your personnel to receive notifications at the same time, certain devices can be programmed to send alerts in a tiered fashion. It is important to consider the reach of the communications, so that you’ll be notified regardless of your locations. Multiple communications methods like phone, email and text provide extra assurance that you’ll get the alert. Also, note of the number of people the system can reach and if the system automatically cycles through the contact list until someone responds. Make sure the system allows for flexible scheduling so that it doesn’t send alarms to off-duty personnel.

Programming and Status Check

If you’re responsible for maintaining a commercial greenhouse facility, you want a system that will provide real-time status of all monitored conditions on demand. There are a few different ways to access your sensor readings. Options include calling to check status, viewing a web page, either on a local network or on the cloud, or accessing the information via an app on your mobile device. With a cloud-based system, the devices supervise themselves. This means if the internet or cellular connection goes down, the device will send an alarm to alert the appropriate personnel.

If you don’t select a cloud-based system, you will be limited to logging in through a local area network, which will allow you to make programming changes, access status conditions and review data logs. If internet connectivity is not available at your location, you will want to choose a cellular or phone system rather than Ethernet-based option.

Data Logging

Sample greenhouse monitoring data log

Data history is valuable in identifying patterns and trends in your cannabis greenhouse conditions. Manually monitoring and recording environmental parameters takes a significant amount of personnel time and detracts from other important workplace demands. However, many monitoring systems automatically save information, recording tens of thousands of data points, dates and times. Cloud-based logging provides an unlimited number of records for users to view, graph, print and export data trends.

Analyzing data samples may lend insight to larger issues and prevent problems before they arise. For example, if the data log shows power fluctuations occurring at a regular time, it could be indicative of a more serious problem. Or, if the data shows signs of a ventilation fan or supplementary lighting beginning to malfunction, they can be repaired or replaced before total failure occurs.

Return On Investment

When deciding how much you should pay for a remote monitoring system, tally up the entire cost, fully installed with additional peripherals and sensors and any labor fees for installation. Then consider the value of your cannabis plant inventory and greenhouse equipment. Finally, factor in the cost of downtime, should an environmental event shut down your operation for a period of time.

Final Thoughts

Choosing the right greenhouse monitoring system and sensors could mean the difference between life and death for your cannabis plants. Understanding the conditions you need to watch and monitoring systems’ capabilities are they best way to protect your investment.

 

Cannabis, Soil Science and Sustainability Part II: The ‘Roots’ of Sustainable Cultivation

By Drew Plebani
No Comments

The modern chemical agricultural approach is based on the assumption that chemical science has discovered all facets of plant nutritional requirements. It is clear that the traditional NPK approach to plant/soil systems has its limitations, both from an ecological perspective and in terms of its ability to create nutrient-dense food.

Soil and plant systems have existed together for millions of years and have evolved the capacity to coexist in a way that is mutually beneficial. Plants have been fed and evolved with these biological and environmental stimuli over millennia.

Looking to the geologic record for evidence, we can see that it shows that invertebrates, fungi and early vascular plants appeared on land roughly 400 million years ago, the first seed bearing plants about 360 million years ago and the first flowering plants 130 million years ago. What does this mean? The soil food web has been in existence for millions of years and significant evidence exists that plants and soil biology have co-evolved together for millennia.

geologictimescale
The Geologic Time Scale

Between mineral rich soils and the soil food web, this natural system has been able to create and provide significant plant available nutrients, certainly enough to facilitate the successful life cycle of many species. Clearly from an evolutionary context this system has been able to facilitate maximum genetic expression and the ongoing evolution of biologic species.

In the not-too-distant past, agricultural fertilization practices were based on the existence of a diversity of plant and animal byproducts, animal manures, green manures, etc. These were reintroduced to the system and combined with the appropriate biologic populations, resulting in the decomposition of these organic material inputs and their conversion into plant-available nutrients.

An overview of traditional farming practices provides substantial evidence that farming has been occurring for at least 10,000 years. Why, with such a long history of symbiotic interactions between biologic species, are we now witnessing the mass deterioration of arable land, and agricultural commodities containing lower nutritional value?

Mycelium, the vegetative part of a fungus bacteria colony, seen breaking through rock.
Together, indigenous mycelium and plant roots seen turning rock into soil

An interesting common question among the conventional farming community, when the topic of organics or sustainability comes up, is “how are you going to feed the world?” Well that goal certainly will not be well served by the development of shelf stable, but low nutrient-dense foods. A greater volume of low nutrient-value foods certainly does not seem like a winning approach. Supporting agricultural systems that encourage the development of sustainable systems via locally produced, nutrient-dense food is a good start.

And the same holds true for cannabis. In fact, the parallels between the production of high quality nutrient dense foods and high quality cannabis products are quite significant.

Nutrient density in crops results from balanced, mineral rich soils, and a diversity of organic materials and biologic life, these elements provide the framework to facilitate the creation of a highly functional, biologic nutrient cycling system. A highly functional soil system results in more nutrient-dense crops, which contain measurably larger quantities of different phytonutrients, vitamins, minerals, flavonoids, and terpenes as compared to a system operating at a lower level of biologic efficiency.

commercialcultivator
Nutrient-dense cannabis flowers

Benefits that have been observed from nutrient-dense crops are: more pest and disease resistance in the vegetative and fruiting stages, greater yield, more complex and intense flavors and a longer shelf life.

Ultimately advancement in any cultivation system means finding and defining limiting factors in the given system. The objective should be ensuring the maximum biologic vitality of the components of said system and its outputs. Practically speaking, in order to enable the full genetic potential of biologic species, this means identifying and working toward the removal of limiting factors. Minimizing or entirely alleviating the factors that limit maximum plant growth will undoubtedly net positive gains and must be an integral component to any sustainable cultivation strategy.

commcultivator3
Cannabis growing in a polyculture

The Earth has provided us with a highly successful, multi-million-year-old biologic system, capable of providing abundant plant available nutrients on demand, a dynamic which must be integral to appropriate and intelligent systems design.

In the pursuit of sustainability, perhaps it is time to return to our roots and begin to pursue dynamics that are mutually beneficial to all forms of biologic life.

In the next article, we will take a step back from viewing sustainability through the lens of soil and plant specific cultivation methodologies, and focus on the broader context of sustainability in cultivation systems. We will look at sustainability from the context of operational efficiency, and provide a case study from a 400-light commercial indoor cannabis operation. The case study will provide evidence that, in order to achieve higher levels of sustainability, both cultivation strategies and operational efficiency must be factored into the equation. As we will see, true sustainability is created through the efficient design, incorporation, use and management of system elements, all of which can, when appropriately designed, work together to create improved efficiency for the system.

pleabnicrop
Soapbox

Cannabis, Soil Science and Sustainability

By Drew Plebani
5 Comments
pleabnicrop

The average commercial cannabis cultivator seems to be following the modern agricultural paradigm. That model is based on questionable and, one might say, ineffective soil systems management.

In the high-yield cannabis world, amidst decades of prohibition, following the lead of the modern agricultural model has resulted in the adoption of cultural practices that go something like this: Use and destroy the soil, then dispose of it once it is rendered lifeless and useless due to repeated heavy applications of chemical fertilizers, pesticides, and other poisons.

commercialcultivator
(Left) unimproved site soil next to (right) improved site soil. Notice the root mass developing on the right

Certainly conventional agricultural food production and the soil management systems underpinning them are faltering, evidenced by soil systems deteriorating many times faster than they are being improved. This qualifies as a failure in my book.

What will be the fate of profit margins, sustainability and medicine in the cannabis industry if we continue to follow blindly in the footsteps of chemical agriculture? Perhaps it is time to turn over a new leaf.

A little context for the discussion: scientists say the Earth has lost a third of arable land in the past 40 years, and some say soil erosion is the number one challenge facing the world today. Why? How?

Well…world agricultural production accounts for about three-quarters of the soil erosion worldwide. This steep decline in arable soil is occurring during a time when the world’s demand for food is rapidly increasing. It is estimated that the world will need to grow 50% more food by 2050, and it is important to note that, the total volume of food necessary, remains relative to the nutrient density of the food.

Time for a radical solution, and cannabis can lead the way.

Currently, cannabis is the most profitable crop per land area and very likely the most resource-consumptive crop grown (due to the current legal and regulatory climate and thus limited supply vs. demand).

As the cannabis industry continues to grow, now more than ever we have the opportunity, and I believe the responsibility, to cultivate in ecologically mindful ways, improve the end product and it’s positive impacts, increase both short-term and long-term profits, decrease or eliminate waste and lower the carbon footprint of cannabis cultivation operations.

commercialcultivator
A cover crop under trellis’ with cannabis plants

Most importantly, we have the opportunity to fund, implement and lead the way in research and development of sustainable, medical, phytonutrient-dense crop production methodologies.

Only by implementing more rigorous scientific methods to cannabis cultivation can we hope to provide truly meaningful improvements in and contributions to the fields of agriculture, science, medicine and human health.

While dumpsters of potting soil continue to roll off to the landfill, complex health and human science and the cultivators truly engaged in science will continue to provide meaningful data regarding plant compounds and what factors influence the best outcome for the desired end product.

commercialcultivator
The same crop pictured above, now two weeks into flowering, using cover crops

I am willing to bet that what is best will not be coming from the business models employing antiquated, wasteful and destructive cultivation strategies, and that in due time these models will fade into distant memories.

This is the first in a series of articles, in which we will explore topics related to the pursuit of high yield, phytonutrient-dense “high brix” cannabis production.

The next article will provide a historical and geologic context to the cannabis plant, as viewed from the scope of soil biology and the progression of ecosystems and soil types, and how maximized genetic expression, through maximized soil and plant health influence the production of high quality cannabis.

CannaGrow: Education on the Science of Cultivation

By Aaron G. Biros
No Comments

The CannaGrow Conference & Expo, held in San Diego on May 7th and 8th, educated attendees on the science of cannabis cultivation. The conference brought subject matter experts from around the country to discuss cannabis breeding and genetics, soil science and cultivation facility design.rsz_img_5038

Discussions at the conference delved deep into the science behind growing while providing some expert advice. Drew Plebani, chief executive officer of Commercial Cultivator, Inc., gave a comprehensive review of soil ecology and how understanding soil fertility is crucial to successfully growing consistent cannabis. “Soil fertility is measured by laboratories in terms of soil minerals, plant-available nutrients, percent of organic materials, pH levels and most importantly the balance of the soil’s chemical makeup,” says Plebani. “There is no silver bullet in soil ecology; increasing your soil fertility comes down to understanding the composition of soil with analytical testing.” Plebani went on to add that soil systems for cannabis need to be slightly fungal-dominant in developing an endomycorrhizal system, which is optimal for cannabis plant growth.

Plebani notes that growth and viability are reliant on maximum root mass.
Plebani notes that growth and viability are reliant on maximum root mass.

Tom Lauerman, colloquially known as Farmer Tom and founder of Farmer Tom Organics, kicked off the conference with an introduction to cultivation techniques. Lauerman also delved into his experience working with federal agencies in conducting the first ever health hazard evaluation (HHE) for cannabis with the National Institute for Occupational Safety and Health (NIOSH). Through the HHE program, NIOSH responds to requests for evaluations of workplace health hazards, which are then enforced by the Occupational Safety & Health Administration (OSHA). Lauerman worked with those federal agencies, allowing them to tour his cultivation facilities to perform an HHE for cannabis processing worker safety. “I was honored to introduce those federal agencies to cannabis and I think this is a great step toward normalizing cannabis by getting the federal government involved on the ground level,” says Lauerman. Through the presentation, Lauerman emphasized the importance of working with NIOSH and OSHA to show federal agencies how the cannabis production industry emerged from the black market, branding itself with a sense of legitimacy.

Attendees flocked to Jacques and his team after the presentation to meet them.
Attendees flocked to Jacques and his team after the presentation to meet them.

Adam Jacques, award-winning cultivator and owner of Grower’s Guild Gardens, discussed his success in breeding CBD-dominant strains and producing customized whole-plant extractions for specific patients’ needs. “I find higher percentages of CBD in plants harvested slightly earlier than you would for a high-THC strain,” says Jacques. “Using closed-loop carbon dioxide extraction equipment, we can use multiple strains to homogenize an oil dialed in for each patient’s specific needs.” As a huge proponent of the Entourage Effect, Jacques stressed the importance of full plant extraction using fractionation with carbon dioxide. He also stressed the importance of analytical testing at every step during processing.

Hildenbrand discussing some of the lesser-known terpenoids yet to be studied.
Hildenbrand discussing some of the lesser-known terpenoids yet to be studied.

Zacariah Hildenbrand, Ph.D., chief scientific officer at C4 Laboratories, provided the 30,000-foot view of the science behind compounds in cannabis, their interactions and his research. With the help of their DEA license, he started the C4 Cannabinomics Collaborative, where they are working with Dr. Kevin Schug at the University of Texas-Arlington to screen various cannabis strains to discover new molecules and characterize their structure. “Secondarily, we are using gene expression profiles and analysis to understand the human physiological response and the mechanism through which they elicit that response,” says Hildenbrand. “As this research evolves, we should look to epigenetics and understanding how genes are expressed.” His collaborative effort uses Shimadzu’s Vacuum Ultraviolet Spectroscopy (VUV), and they use the only VUV instrument in an academic laboratory in the United States. “Pharmaceuticals are supposed to be a targeted therapy and that is where we need to go with cannabis,” says Hildenbrand. Him and his team at C4 Laboratories want to work on the discovery of new terpenes and analyze their potential benefits, which could be significant research for cannabis medicine.

Other important topics at the conference included facility design and optimization regarding efficient technologies such as LED lighting and integrated pest management.

soslticefarms_feb
Biros' Blog

Sustainability of Cultivation in 2016, Part II

By Aaron G. Biros
No Comments
soslticefarms_feb

In the second part of this series, I speak with Alex Cooley, vice president of Solstice, to find out what particular solutions growers can use to increase efficiency. Last month, I introduced the challenge of growing cannabis more sustainably. To recap, I raised the issue of sustainability as an economic, social and environmental problem and referenced recent pesticide issues in Colorado and carbon footprint estimates of growing cannabis.

soslticefarms_feb
The growers at Solstice put their plants under a trellis net to increase yield.

Alex Cooley is the vice president of Solstice, a cultivation and processing business based in Washington. Solstice is at the forefront of the industry for innovating in energy, water and raw materials efficiency. I sat down with Cooley to discuss exactly what you can do to grow cannabis sustainably.

“Switching to outdoors or greenhouse will always be more sustainable than indoor, but depending on the type of facility, energy efficiency and specifically lighting should be at top of mind,” says Cooley. “Just looking at your bottom line, it is cheaper to use energy efficient lighting sources such as plasma or LED lighting, which will reduce your need for air conditioning and your overall energy consumption.”

Looking into sustainable technologies is one of the quicker ways to improve your overall efficiency. “We are big believers in VRF [variable refrigerant flow] HVAC systems because it is one of the most energy efficient ways to cool a large space in the world,” adds Cooley. “Use a smart water filtration system that gets away from wasting water by catching condensate off AC and dehumidifiers, filtering and then reusing that water.”

solsticegrowop_feb
Indoor cultivator facilities use high powered lights that give off heat, requiring an efficient air cooling system like VRF HVAC.

Utilizing your waste streams is another relatively simple and cost effective practice to grow cannabis sustainably. “Our soil and biomass goes through a composting company, we recapture any of our waste fertilizer and runoff for reuse,” says Cooley. “We try to use post-consumer or fully recyclable packaging to reduce what would go into the waste streams.”

So some of the low hanging fruit to improve your bottom line and overall sustainability, according to Alex Cooley, include things like reusing materials, composting, increasing energy efficiency and saving water. These are some of the easily implementable standard operating procedures that directly address inefficiency in your operation.

soslticefarms_feb
The tops of plants are beginning to flower in this Solstice indoor facility.

In the next part of this series, I will discuss Terra Tech’s approach to sustainable cultivation, which utilizes the “Dutch hydroponic greenhouse model” on a large scale growing produce such as thyme and basil, but are now taking their technologies and expertise to the cannabis industry. I will also discuss the benefits of using a third party certification, Clean Green Certified, to not only help grow cannabis more ecofriendly, but also market your final product as such. Stay tuned for more in Sustainability of Cultivation in 2016, Part III.