Tag Archives: sanitation

Supplier Quality Audits: A Critical Factor in Ensuring GMP Compliance

By Amy Scanlin
No Comments

Editor’s Note: This is an article submission from the EAS Consulting Group, LLC team.

To Audit, or not to audit? Not even a question! Audits play a crucial role in verifying and validating business practices, ensuring suppliers are meeting their requirements for Good Manufacturing Practices (GMPs), and most importantly, protecting your interests by ensuring that you consistently receive a compliant and quality product. Audits can help ensure sound business procedures and quality systems, including well-established SOPs, verification and documentation of batch records, appropriate sanitation practices and safe storage and use of ingredients. Audits can also identify deficiencies, putting into motion a corrective action plan to mitigate any further challenges. While a detailed audit scheme is commonplace for established industries such as food, pharmaceuticals and dietary supplements, it is equally important for the cannabis industry to ensure the same quality and safety measures are applied to this budding industry.

If the question then is not whether to audit, perhaps the question is how and when to audit, particularly in the case of a company’s suppliers.This is an opportunity to strengthen the working relationship with each side demonstrating a commitment to the end product.

Supplier audits ensure first and foremost that the company with which you have chosen to work is operating in a manner that meets or exceeds your quality expectations – and you should have expectations because ultimately your product is your responsibility. Any issues that arise, even if they are technically the fault of a supplier, become your issue, meaning any enforcement action taken by your state regulators will directly impact your business. Yes, your supplier may provide you with a batch Certificate of Analysis but you should certify their results as well.

Audits are a snapshot of a moment in time and therefore should be conducted on a regular basis, perhaps biennially or even annually, if they are a critical supplier. In some cases, companies choose to bring in third-party auditors to provide an objective assessment of suppliers. This is especially helpful when the manufacturer or customer does not have the manufacturing, compliance and analytical background to accurately interpret data gathered as part of the audit. With the responsibility for ensuring ingredient identity and product integrity falling on the manufacturer, gaining an unbiased and accurate assessment is imperative to reducing the risk to your business.

Conducting a supplier audit should be well planned in advance to ensure both sides are ready. The audit team must be prepared and able to perform their duties via a combination of education, training and experience. A lead auditor will oversee the team and ultimately will also oversee the results, verifying all nonconformities have been properly identified. They will also work with the supplier to conduct a root cause analysis for those nonconformities and develop a corrective action plan to eliminate them from occurring in the future. The audit lead will also verify follow-up results.

Auditors should discuss with the supplier in advance what areas will be observed, what documentation will need to be ready for review and they should conduct their assessments with professionalism. After all, this is an opportunity to strengthen the working relationship with each side demonstrating a commitment to the end product.This is your chance to ensure your suppliers are performing and will meet your business, quality and product expectations.

Auditors must document that ingredient identity and finished product specifications are verified by test methods appropriate for the intended purpose (such as a whole compound versus a powder). State regulations vary so be certain to understand the number and types of required tests. Once the audit is complete and results are analyzed, you, the manufacturer, have an opportunity to determine if the results are acceptable. Remember, it is your product, so ultimately it is your responsibility to review the available data and release the product to market, you cannot put that responsibility on your supplier.

Quality Agreements as Part of a Business Agreement

There are opportunities to strengthen a partnership at every turn, and one way to set a relationship on the right path is to include a quality agreement as part of a business agreement. A quality agreement lays out your expectations for your suppliers, what you are responsible for and is a living document that, once signed, demonstrates their commitment to upholding the standards you expect. Just as with a business agreement, have any quality agreements reviewed by an outside expert to ensure the wording is sound and that your interests are protected. This is just another step in the development of a well-executed business plan and one that solidifies expectations and provides consequences when those expectations are not met.

Supplier audits must be taken seriously as they are opportunities to protect your brand, your business and your consumers. Enter into an audit as you would with any business endeavor – prepared. This is your chance to ensure your suppliers are performing and will meet your business, quality and product expectations.


10 Treatment Methods to Reduce Mold in Cannabis

By Ketch DeGabrielle

As the operations manager at Los Sueños Farms, the largest outdoor cannabis farm in the country, I was tasked with the challenge of finding a yeast and mold remediation treatment method that would ensure safe and healthy cannabis for all of our customers while complying with stringent regulations.

While outdoor cannabis is not inherently moldy, outdoor farms are vulnerable to changing weather conditions. Wind transports spores, which can cause mold. Each spore is a colony forming unit if plated at a lab, even if not germinated in the final product. In other words, perfectly good cannabis can easily fail microbial testing with the presence of benign spores.

Fun Fact: one square centimeter of mold can produce over 2,065,000,000 spores.

If all of those landed on cannabis it would be enough to cause over 450 pounds of cannabis to fail testing, even if those spores remained ungerminated.

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

It should also be known that almost every food item purchased in a store goes through some type of remediation method to be considered safe for sale. Cannabis is finally becoming a legitimized industry and we will see regulations that make cannabis production look more like food production each year.

Regulations in Colorado (as well as Nevada and Canada) require cannabis to have a total yeast and mold count (TYMC) of ≤ 10,000 colony forming units per gram. We needed a TYMC treatment method that was safe, reliable, efficient and suitable for a large-scale operation. Our main problem was the presence of fungal spores, not living, growing mold.

Below is a short list of the pros and cons of each treatment method I compiled after two years of research:

Autoclave: This is the same technology used to sterilize tattoo needles and medical equipment. Autoclave uses heat and pressure to kill living things. While extremely effective, readily available and fiscally reasonable, this method is time-consuming and cannot treat large batches. It also utilizes moisture, which increases mold risk. The final product may experience decarboxylation and a change in color, taste and smell.

Dry Heat: Placing cannabis in dry heat is a very inexpensive method that is effective at reducing mold and yeast. However, it totally ruins product unless you plan to extract it.

An autoclave
Image: Tom Beatty, Flickr

Gamma Ray Radiation: By applying gamma ray radiation, microbial growth is reduced in plants without affecting potency. This is a very effective, fast and scalable method that doesn’t cause terpene loss or decarboxylation. However, it uses ionizing radiation that can create new chemical compounds not present before, some of which can be cancer-causing. The Department of Homeland Security will never allow U.S. cannabis farmers to use this method, as it relies on a radioactive isotope to create the gamma rays.

Gas Treatment: (Ozone, Propylene Oxide, Ethylene Oxide, Sulfur Dioxide) Treatment with gas is inexpensive, readily available and treats the entire product. Gas treatment is time consuming and must be handled carefully, as all of these gases are toxic to humans. Ozone is challenging to scale while PPO, EO and SO2 are very scalable. Gases require special facilities to apply and it’s important to note that gases such as PPO and EO are carcinogenic. These methods introduce chemicals to cannabis and can affect the end product by reducing terpenes, aroma and flavor.

Hydrogen Peroxide: Spraying cannabis plants with a hydrogen peroxide mixture can reduce yeast and mold. However, moisture is increased, which can cause otherwise benign spores to germinate. This method only treats the surface level of the plant and is not an effective remediation treatment. It also causes extreme oxidation, burning the cannabis and removing terpenes.

Microwave: This method is readily available for small-scale use and is non-chemical based and non-ionizing. However, it causes uneven heating, burning product, which is damaging to terpenes and greatly reduces quality. This method can also result in a loss of moisture. Microwave treatment is difficult to scale and is not optimal for large cultivators.

Radio Frequency: This method is organic, non-toxic, non-ionizing and non-chemical based. It is also scalable and effective; treatment time is very fast and it treats the entire product at once. There is no decarboxylation or potency loss with radio frequency treatment. Minimal moisture loss and terpene loss may result. This method has been proven by a decade of use in the food industry and will probably become the standard in large-scale treatment facilities.

Steam Treatment: Water vapor treatment is effective in other industries, scalable, organic and readily available. This method wets cannabis, introducing further mold risk, and only treats the product surface. It also uses heat, which can cause decarboxylation, and takes a long time to implement. This is not an effective method to reduce TYMC in cannabis, even though it works very well for other agricultural products

extraction equipment
Extraction can be an effective form of remediating contaminated cannabis

Extraction: Using supercritical gas such as butane, heptane, carbon dioxide or hexane in the cannabis extraction process is the only method of remediation approved by the Colorado Marijuana Enforcement Division and is guaranteed to kill almost everything. It’s also readily available and easy to access. However, this time-consuming method will change your final product into a concentrate instead of flower and usually constitutes a high profit loss.

UV Light: This is an inexpensive and readily available method that is limited in efficacy. UV light is only effective on certain organisms and does not work well for killing mold spores. It also only kills what the light is touching, unless ozone is captured from photolysis of oxygen near the UV lamp. It is time consuming and very difficult to scale.

After exhaustively testing and researching all treatment methods, we settled on radio frequency treatment as the best option. APEX, a radio frequency treatment machine created by Ziel, allowed us to treat 100 pounds of cannabis in an hour – a critical factor when harvesting 36,000 plants during the October harvest.

10 Ways to Reduce Mold in Your Grow

By Ketch DeGabrielle

Regardless of whether your grow is indoor or in a greenhouse, mold is a factor that all cultivators must consider.

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

After weeks of careful tending, pruning and watering to encourage a strong harvest, all cultivators are looking to sell their crop for the highest market value. A high mold presence, measured through a total yeast and mold count (TYMC), can cause a change of plans by decreasing crop value. But it doesn’t have to.

There are simple steps that any cultivator can take that will greatly eliminate the risk of mold in a grow. Below are some basic best practices to incorporate into your operation to reduce contaminants and mold growth:

  1. Isolate dirty tasks. If you are cleaning pots, filling pots or scrubbing trimming scissors, keep these and other dirty tasks away from grow and process areas. Dirty tasks can contaminate the grow area and encourage mold growth. Set up a “dirty room” that does not share heating, ventilation and air conditioning with clean areas.
  2. Compartmentalize the grow space. Mold can launch spores at speeds up to 55 miles per hour up to eight feet away without any air current. For this reason, if mold growth begins, it can become a huge problem very quickly. Isolate or remove a problem as soon as it is discovered- better to toss a plant than to risk your crop.
  3. No drinks or food allowed. Any drinks or food, with the exception of water, are completely off limits in a grow space. If one of your employees drops a soda on the ground, the sugars in the soda provide food for mold and yeast to grow. You’d be surprised how much damage a capful of soda or the crust of a sandwich can do.
  4. Empty all trash daily. Limiting contaminants in turn limits the potential for issues. This is an easy way to keep your grow clean and sterile.
  5. Axe the brooms. While a broom may seem like the perfect way to clean the floor, it is one of the fastest ways to stir up dirt, dust, spores and contaminants, and spread them everywhere. Replace your brooms with hepa filter backpack vacuums, but be sure that they are always emptied outside at the end of the work day.
  6. No standing water or high humidity. Mold needs water to grow, therefore standing water or high humidity levels gives mold the sustenance to sporulate. Pests also proliferate with water. Remove standing water and keep the humidity level as low as possible without detriment to your plants.
  7. Require coveralls for all employees. Your employee may love his favorite jean jacket, but the odds are that it hasn’t been cleaned in months and is covered with mold spores. Clean clothing for your staff is a must. Provide coveralls that are washed at least once a week if not daily.
  8. Keep things clean. A clean and organized grow area will have a huge impact on mold growth. Clean pots with oxidate, mop floors with oxidate every week, keep the areas in front of air returns clean and clutter-free, and clean floor drains regularly. The entire grow and everything in it should be scrubbed top to bottom after each harvest.
  9. Keep it cool. Keep curing areas cool and storage areas cold where possible. The ideal temperature for a curing area is roughly 60 degrees and under 32 degrees for a storage area. Just like food, the lower the temperature, the better it keeps. High temperature increases all molecular and biological activity, which causes things to deteriorate faster than at cooler temperatures. However, curing temperature is a function of water activity more than anything.
  10. Be Careful With Beneficials. Beneficial insects certainly have their place in the grow environment. However, if you have a problem with mold on only a small percentage of plants, any insect can act as a carrier for spores and exacerbate the problem. By the same token, pests spread mold more effectively than beneficials because they produce rapidly, where beneficials die if there aren’t pests for them to eat. It is best to use beneficials early in the cycle and only when necessary.

Microbiology 101 Part Two

By Kathy Knutson, Ph.D.
No Comments

Microbiology 101 Part One introduced the reader to the science of microbiology and sources of microbes. In Part Two, we discuss the control of microorganisms in your products.

Part 2

The cannabis industry is probably more informed about patients and consumers of their products than the general food industry. In addition to routine illness and stress in the population, cannabis consumers are fighting cancer, HIV/AIDS and other immune disorders. Consumers who are already ill are immunocompromised. Transplant recipients purposely have their immune system suppressed in the process of a successful transplant. These consumers have pre-existing conditions where the immune system is weakened. If the immunocompromised consumer is exposed to viral or bacterial pathogens through cannabis products, the consumer is more likely to suffer from a viral infection or foodborne illness as a secondary illness to the primary illness. In the case of consumers with weakened immune systems, it could literally kill them.Bacteria, yeast, and mold are present in all environments.

The cannabis industry shoulders great responsibility in both the medical and adult use markets. In addition to avoiding chemical hazards and determining the potency of the product, the cannabis industry must manufacture products safe for consumption. There are three ways to control pathogens and ensure a safe product: prevent them from entering, kill them and control their growth.

Prevent microorganisms from getting in

Think about everything that is outdoors that will physically come in a door to your facility. Control the quality of ingredients, packaging, equipment lubricants, cleaning agents and sanitizers. Monitor employee hygiene. Next, you control everything within your walls: employees, materials, supplies, equipment and the environment. You control receiving, employee entrance, storage, manufacturing, packaging and distribution. At every step in the process, your job is to prevent the transfer of pathogens into the product from these sources.

Kill microorganisms

Colorized low-temperature electron micrograph of a cluster of E. coli bacteria.
Image courtesy of USDA ARS & Eric Erbe

The combination of raw materials to manufacture your product is likely to include naturally occurring pathogens. Traditional heat methods like roasting and baking will kill most pathogens. Remember, sterility is not the goal. The concern is that a manufacturer uses heat to achieve organoleptic qualities like color and texture, but the combination of time and temperature may not achieve safety. It is only with a validated process that safety is confirmed. If we model safety after what is required of food manufacturers by the Food and Drug Administration, validation of processes that control pathogens is required. In addition to traditional heat methods, non-thermal methods for control of pathogens includes irradiation and high pressure processing and are appropriate for highly priced goods, e.g. juice. Killing is achieved in the manufacturing environment and on processing equipment surfaces after cleaning and by sanitizing.

If you have done everything reasonable to stop microorganisms from getting in the product and you have a validated step to kill pathogens, you may still have spoilage microorganisms in the product. It is important that all pathogens have been eliminated. Examples of pathogens include Salmonella, pathogenic Escherichia coli, also called Shiga toxin-producing E. coli (STEC) and Listeria monocytogenes. These three common pathogens are easily destroyed by proper heat methods. Despite steps taken to kill pathogens, it is theoretically possible a pathogen is reintroduced after the kill step and before packaging is sealed at very low numbers in the product. Doctors do not know how many cells are required for a consumer to get ill, and the immunocompromised consumer is more susceptible to illness. Lab methods for the three pathogens mentioned are designed to detect very low cell numbers. Packaging and control of growth factors will stop pathogens from growing in the product, if present.

Control the growth of microorganisms

These growth factors will control the growth of pathogens, and you can use the factors to control spoilage microbes as well. To grow, microbes need the same things we do: a comfortable temperature, water, nutrients (food), oxygen, and a comfortable level of acid. In the lab, we want to find the pathogen, so we optimize these factors for growth. When you control growth in your product, one hurdle may be enough to stop growth; sometimes multiple hurdles are needed in combination. Bacteria, yeast, and mold are present in all environments. They are at the bottom of the ocean under pressure. They are in hot springs at the temperature of boiling water. The diversity is immense. Luckily, we can focus on the growth factors for human pathogens, like Salmonella, pathogenic E. coli, and Listeria monocytogenes.

The petri dishes show sterilization effects of negative air ionization on a chamber aerosolized with Salmonella enteritidis. The left sample is untreated; the right, treated. Photo courtesy of USDA ARS & Ken Hammond

Temperature. Human pathogens prefer to grow at the temperature of the human body. In manufacture, keep the time a product is in the range of 40oF to 140oF as short as possible. You control pathogens when your product is at very hot or very cold temperatures. Once the product cools after a kill step in manufacturing, it is critical to not reintroduce a pathogen from the environment or personnel. Clean equipment and packaging play key roles in preventing re-contamination of the product.

Water. At high temperatures as in baking or roasting, there is killing, but there is also the removal of water. In the drying process that is not at high temperature, water is removed to stop the growth of mold. This one hurdle is all that is needed. Even before mold is controlled, bacterial and yeast growth will stop. Many cannabis candies are safe, because water is not available for pathogen growth. Packaging is key to keep moisture out of the product.

Nutrients. In general, nutrients are going to be available for pathogen growth and cannot be controlled. In most products nutrients cannot be removed, however, recipes can be adjusted. Recipes for processed food add preservatives to control growth. In cannabis as in many plants, there may be natural compounds which act as preservatives.

Oxygen. With the great diversity of bacteria, there are bacteria that require the same oxygen we breathe, and mold only grows in oxygen. There are bacteria that only grow in the absence of oxygen, e.g. the bacteria responsible for botulism. And then there are the bacteria and yeast in between, growing with or without oxygen. Unfortunately, most human pathogens will grow with or without oxygen, but slowly without oxygen. The latter describes the growth of Salmonella, E. coli, and Listeria. While a package seals out air, the growth is very slow. Once a package is opened and the product is exposed to air, growth accelerates.

Acid. Fermented or acidified products have a higher level of acid than non-acid products; the acid acts as a natural preservative. The more acid, the more growth is inhibited. Generally, acid is a hurdle to growth, however and because of diversity, some bacteria prefer acid, like probiotics which are non-pathogenic. Some pathogens, like E. coli, have been found to grow in low acid foods, e.g. juice, even though the preference is for non-acidic environments.

Each facility is unique to its materials, people, equipment and product. A safe product is made by following Good Agricultural Practices for the cannabis, by following Good Manufacturing Practices and by suppressing pathogens by preventing them coming in, killing them and controlling their growth factors. Future articles will cover Hazard Analysis and Critical Control Points (HACCP) and food safety in more detail.

Pennsylvania Temporary Rules for Growers & Processors Released

By Aaron G. Biros
No Comments

Last week, Pennsylvania Department of Health Secretary Dr. Karen Murphy announced the formation of temporary regulations for cannabis growers and processors in the state, according to a press release. Those temporary rules were published on Saturday, October 29. Secretary Murphy asked for public comment on developing regulations for dispensaries as well.padeptofhealthlogo-768x186

The PA Department of Health published the new set of temporary regulations this past Saturday, outlining “the financial, legal and operational requirements needed by an individual to be considered for a grower/processor permit, as well as where the facilities can be located.” The regulations also discuss tracking systems, equipment maintenance, safety issues, disposal of cannabis, tax reporting, pesticides, recalls and insurance requirements. “One of our biggest accomplishments to date is the development of temporary regulations for marijuana growers and processors,” says Secretary Murphy. “We received nearly 1,000 comments from members of the community, the industry and our legislative partners.”

The general provisions published on Saturday outline the details of the application process, fees, inspections, reporting, advertising and issues surrounding locations and zoning. The temporary regulations for growers and processors delve into the minutia of regulatory compliance for a variety of issues: including security, storage, maintenance, transportation, tracking, disposal, recall, pesticides and packaging and safety requirements. A list of pesticides permitted for use can also be found at the bottom of the rules.

PA Department of Health Secretary Dr. Karen Murphy
PA Department of Health Secretary Dr. Karen Murphy

The document discusses the regulations for performing voluntary and mandatory recalls in great detail. It requires thorough documentation and standard operating procedures for the disposal of contaminated products, cooperation with the Department of Health and appropriate communications with those affected by the recall.

The department has yet to release temporary regulations for laboratories and dispensaries, but hopes to do so before the end of the year. “I am encouraging the public – and specifically the dispensary community – to review the temporary regulations and provide us with their feedback,” says Secretary Murphy. “The final temporary regulations for dispensaries will be published in the Pennsylvania Bulletin by the end of the year.”

Since Governor Tom Wolf signed the medical cannabis program bill into law in April 2016, the state has made considerable progress to develop the program, including setting up a physician workgroup, public surveys for developing temporary rules and a request for information for electronic tracking IT solutions. The PA Department of Health expects to implement the program fully in the next 18 to 24 months.