Tag Archives: QC

Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary, Part 5

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

Protection in the Court of Public Opinion

In the last four articles, I have outlined areas that impact your operations as they apply to laboratory quality programs. But this article will take a different path. It will focus on protecting your crop and brand along with any business that utilizes your crop, such as dispensaries or edible manufactures in the court of public opinion.

Now, the elephant in the room for cannabis companies is the difference between rules written by the state and their enforcement by the state. There are many anecdotal stories out there that can be used as case studies in identifying ways to protect your brand. Remember, consumers and the media caught them, not the regulators.

Cheating in the cannabis industry: growers, dispensaries, edibles manufactures, etc. This includes:

  1. Finding laboratories that will produce results that the client wants (higher potency numbers)
  2. Not testing for a particular contaminant that may be present in the cannabis product.
  3. Selling failed crops on the gray or black market.
  4. Claiming to regulators that the state rules are unclear and cannot be followed (e.g. So, give me another chance, officer)

So why should you be worried? Because, even if the state where you operate fails to enforce its own rules, the final end-user of your product will hold you accountable! If you produce any cannabis product and fail to consider these end-users, you will be found out in the court of public opinion by either the media or by the even more effective word of mouth (e.g. Social Media).

So, let’s take a look at some recent examples of these problems:

  1. “Fungus In Medical Marijuana Eyed As Possible Cause In California Man’s Death”
  2. “Pesticides and Pot: What’s California Smoking?”
  3. Buyers beware: California cannabis sold Jan. 1 could be tainted”

Each of these reports lists contamination by microbial stains or pesticides as being rampant within the California market whose products are used for medical or recreational use. Just imagine the monetary losses these cannabis businesses faced for their recalled cannabis product when they got caught. Remember, consumers and the media caught them, not the regulators.Institute a quality program in your business immediately.

How can you be caught? There are many different ways:

  1. Consumer complaints to the media
  2. Secret shopper campaigns (more to come on that in the next article)
  3. Media investigations
  4. Social media campaigns

What are the effects on your business? Product recalls such as these two to hit the California market recently.

So, what should you do to produce an acceptable product and provide reasonable protection to your cannabis business? Institute a quality program in your business immediately. This quality program will include areas of quality assurance and quality control for at least these areas.

  1. Growing
  2. Processing or formulating
  3. Shipping
  4. Dispensing
  5. Security
  6. Training of staff
  7. Laboratory services

Setting up and supporting these programs requires that your upper management impose both a rigorous training program and make employee compliance mandatory. Otherwise, your business will have an unreasonable risk of failure in the future.

Further information on preparing and instituting these types of quality assurance and quality control programs within your business can be found at the author’s website.

Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary, Part 4

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

In the last three articles, I discussed the laboratory’s responses or defenses used to reply to your questions about laboratory results that place stress on the success of your business. The Quality Control (QC) results can cause this stress if they are not run correctly to answer the following questions:

  1. Are the laboratory results really true?
  2. Can the laboratory accurately analyze sample products like my sample?
  3. Can the laboratory reproduce the sample results for my type of sample?

Now let’s discuss the most important QC test that will protect your crop and business. That QC sample is the Matrix Sample. In the last article in this series, you were introduced to many QC samples. The Matrix Sample and Duplicate were some of them. Take a look back at Part 3 to familiarize yourself with the definitions.

The key factors of these QC sample types are:

  1. Your sample is used to determine if the analysis used by the laboratory can extract the analyte that is being reported back to you. This is performed by the following steps:
    1. Your sample is analyzed by the laboratory as received.
    2. Then a sub-sample of your sample is spiked with a known concentration of the analyte you are looking for (e.g. pesticides, bacteria, organic chemicals, etc.).
    3. The difference between the sample with and without a spike indicates whether the laboratory can even find the analyte of concern and whether the percent recovery is acceptable.
    4. Examples of failures are from my experiences:
      1. Laboratory 1 spiked a known amount of a pesticide into a wastewater matrix. (e.g. Silver into final treatment process water). The laboratory failed to recover any of the spiked silver. Therefore the laboratory results for these types of sample were not reporting any silver, but silver may be present. This is where laboratory results would be false negatives and the laboratory method may not work on the matrix (your sample) correctly. .
      2. Laboratory 2 ran an analysis for a toxic compound (e.g. Cyanide in final waste treatment discharge). A known amount of cyanide was spiked into a matrix sample and 4 times the actual concentration of that cyanide spike was recovered. This is where laboratory results would be called false positives and the laboratory method may not work on the matrix (your sample) correctly.
  2. Can the laboratory reproduce the results they reported to you?
    1. The laboratory needs to repeat the matrix spike analysis to provide duplicate results. Then a comparison of the results from the first matrix spike with its duplicate results will show if the laboratory can duplicate their test on your sample.
      1. If the original matrix spike result and the duplicate show good agreement (e.g. 20% relative percent difference or lower). Then you can be relatively sure that the result you obtained from the laboratory is true.
      2. But, if the original matrix spike result and the duplicate do not show good agreement (e.g. greater than 20% relative percent difference). Then you can be sure that the result you obtained from the laboratory is not true and you should question the laboratory’s competence.

Now, the question is why a laboratory would not perform these matrix spike and duplicate QC samples? Well, the following may apply:

  1. These matrix samples take too much time.
  2. These matrix samples add a cost that the laboratory cannot recover.
  3. These matrix samples are too difficult for the laboratory staff to perform.
  4. Most importantly: Matrix samples show the laboratory cannot perform the analyses correctly on the matrix.

So, what types of cannabis matrices are out there? Some examples include bud, leaf, oils, extracts and edibles. Those are some of the matrices and each one has their own testing requirements. So, what should you require from your laboratory?

  1. The laboratory must use your sample for both a matrix spike and a duplicate QC sample.
  2. The percent recovery of both the matrix spike and the duplicate will be between 80% and 120%. If either of the QC samples fail, then you should be notified immediately and the samples reanalyzed.
  3. If the relative percent difference between the matrix spike and the duplicate will be 20% or less. If the QC samples fail, then you should be notified immediately and the samples should be reanalyzed.

The impact of questionable laboratory results on your business with failing or absent matrix spike and the duplicate QC samples can be prevented. It is paramount that you hold the laboratory responsible to produce results that are representative of your sample matrix and that are true.

The next article will focus on how your business will develop a quality plan for your laboratory service provider with a specific focus on the California Code Of Regulations, Title 16, Division 42. Bureau Of Cannabis Control requirements.

Orange Photonics Introduces Terpenes+ Module in Portable Analyzer

By Aaron G. Biros
No Comments

Last week at the National Cannabis Industry Association’s (NCIA) Cannabis Business Summit, Orange Photonics unveiled their newest product added to their suite of testing instruments for quality assurance in the field. The Terpenes+ Module for the LightLab Cannabis Analyzer, which semi-quantitatively measures terpenes, Cannabichromene (CBC) and degraded THC, adds three new chemical analyses to the six cannabinoids it already reports.

CBC, a cannabinoid typically seen in hemp and CBD-rich plants, has been linked to some potentially impactful medical applications, much like the findings regarding the benefits of CBD. The module that tests for it, along with terpenes and degraded THC, can be added to the LightLab without any changes to hardware or sample preparation.

Dylan Wilks, chief technology officer of Orange Photonics
Dylan Wilks, chief technology officer of Orange Photonics

According to Dylan Wilks, chief technology officer of Orange Photonics, this could be a particularly useful tool for distillate producers looking for extra quality controls. Cannabis distillates are some of the most prized cannabis products around, but the heat used to create them can also create undesirable compounds,” says Wilks. “Distillate producers can see potency drop more than 25% if their process isn’t optimized”. With this new Terpenes+ Module, a distillate producer could quantify degraded THC content and get an accurate reading for their QC/QA department.

We spoke with Stephanie McArdle, president of Orange Photonics, to learn more about their instruments designed for quality assurance for growers and extractors alike.

Stephanie McArdle, president of Orange Photonics
Stephanie McArdle, president of Orange Photonics

According to McArdle, this could help cultivators and processors understand and value their product when terpene-rich products are the end goal. “Rather than try to duplicate the laboratory analysis, which would require expensive equipment and difficult sample preparation, we took a different approach. We report all terpenes as a single total terpene number,” says McArdle. “The analyzer only looks for monoterpenes (some common monoterpenes are myrcene, limonene and alpha-pinene), and not sesquiterpenes (the other major group of cannabis terpenes, such as Beta- Caryophyllene and Humulene) so the analysis is semi-quantitative. What we do is measure the monoterpenes and make an assumption that the sesquiterpenes are similar to an average cannabis plant to calculate a total terpene content.” She says because roughly 80% of terpenes found in cannabis are monoterpenes, this should produce accurate results, though some exotic strains may not result in accurate terpene content using this method.

The LIghtLab analyzer on the workbench
The LIghtLab analyzer on the workbench

As growers look to make their product unique in a highly competitive market, many are looking at terpenes as a source of differentiation. There are a variety of areas where growers can target higher terpene production, McArdle says. “During production, a grower may want to select plants for growing based on terpene content, or adjust nutrient levels, lighting, etc. to maximize terpenes,” says McArdle. “During the curing process, adjusting the environmental conditions to maximize terpene content is highly desirable.” Terpenes are also beginning to get recognized for their potential medical and therapeutic values as well, notably as an essential piece in the Entourage Effect. “Ultimately, it comes down to economics – terpene rich products have a higher market value,” says McArdle. “If you’re the grower, you want to prove that your product is superior. If you’re the buyer, you want to ensure the product you buy is high quality before processing it into other products. In both cases, knowing the terpene content is critical to ensuring you’re maximizing profits.”

Orange Photonics’ LightLab operates very similarly to instruments you might find in a cannabis laboratory. Many cannabis testing labs use High Performance Liquid Chromatography (HPLC) to analyze hemp or cannabis samples. “The primary difference between LightLab and an HPLC is that we operate at lower pressures and rely on spectroscopy more heavily than a typical HPLC analysis does,” says McArdle. “Like an HPLC, LightLab pushes an extracted cannabis sample through a column. The column separates the cannabinoids in the sample by slowing down cannabinoids by different amounts based on their affinity to the column.” McArdle says this is what allows each cannabinoid to exit the column at a different time. “For example, CBD may exit the column first, then D9THC and so on,” says McArdle. “Once the column separates the cannabinoids, they are quantified using optical spectroscopy- basically we are using light to do the final quantification.”

Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary, Part 3

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

Editor’s Note: The views expressed in this article are the author’s opinions based on his experience working in the laboratory industry. This is an opinion piece in a series of articles designed to highlight the potential problems that clients may run into with labs. 


In the last two articles, I discussed the laboratory’s first line of defense (e.g. certification or accreditation) paperwork wall used if a grower, processor or dispensary (user/client) questioned a laboratory result and the conflicts of interest that exist in laboratory culture. Now I will discuss the second line of defense that a laboratory will present to the user in the paperwork wall: Quality Control (QC) results.

Do not be discouraged by the analytical jargon of the next few articles. I suggest that you go immediately to the conclusions to get the meat of this article and then read the rest of it to set you on the path to see the forest for the trees.

QC in a laboratory consists of a series of samples run by the laboratory to determine the accuracy and precision of a specific batch of samples. So, to start off, let’s look at the definitions of accuracy and precision.QC Charts can provide a detailed overview of laboratory performance in a well-run laboratory.

According to the Standard Methods for the Examination of Water and Wastewater:

Accuracy: estimate of how close a measured value is to the true value; includes expressions for bias and precision.

Precision: a measure of the degree of agreement among replicate analyses of a sample.

A reputable laboratory will measure the Accuracy and Precision of QC samples in a batch of user samples and record these values in both the analytical test report issued to the user and in control charts kept by the laboratory. These control charts can be reviewed by the user if they are requested by the user. These control charts record:

Accuracy (means) chart: The accuracy chart for QC samples (e.g., LRB, CCV, LFBs, LFMs, and surrogates) is constructed from the average and standard deviation of a specified number of measurements of the analyte of interest.

Precision (range) chart: The precision chart also is constructed from the average and standard deviation of a specified number of measurements (e.g., %RSD or RPD) for replicate of duplicate analyses of the analyte of interest.

Now, let’s look at what should be run in a sample batch for cannabis analyses. The typical cannabis sample would have analyses for cannabinoids, terpenes, microbiological, organic compounds, pesticides and heavy metals.

Each compound listed above would require a specific validated analytical method for the type of matrix being analyzed. Examples of specific matrixes are:

  • Cannabis buds, leaves, oil
  • Edibles, such as Chocolates, Baked Goods, Gummies, Candies and Lozenges, etc.
  • Vaping liquids
  • Tinctures
  • Topicals, such as lotions, creams, etc.

Running QC analyses does not guarantee that the user’s specific sample in the batch was analyzed correctly.

Also, both ISO 17025-2005 and ISO 17025-2017 require the use of a validated method.

ISO 17025-2005: When it is necessary to use methods not covered by standard methods, these shall be subject to agreement with the customer and shall include a clear specification of the customer’s requirements and the purpose of the test and/or calibration. The method developed shall have been validated appropriately before use.

ISO 17025-2017: The laboratory shall validate non-standard methods, laboratory-developed methods and standard methods used outside their intended scope or otherwise modified. The validation shall be as extensive as is necessary to meet the needs of the given application or field of application.

Validation procedures can be found in a diverse number of analytical chemistry associations (such as AOACand ASTM) but the State of California has directed users and laboratories to the FDA manual “Guidelines for the Validation of Chemical Methods for the FDA FVM Program, 2nd Edition, 2015

The laboratory must have on file for user review the following minimum results in an analytical statistical report validating their method:

  • accuracy,
  • limit of quantitation,
  • ruggedness,
  • precision,The user must look beyond the QC data provided in their analytical report or laboratory control charts.
  • linearity (or other calibration model),
  • confirmation of identity
  • selectivity,
  • range,
  • spike recovery.
  • limit of detection,
  • measurement uncertainty,

The interpretation of an analytical statistical report will be discussed in detail in the next article. Once the validated method has been selected for the specific matrix, then a sample batch is prepared for analysis.

Sample Batch: A sample batch is defined as a minimum of one (1) to a maximum of twenty (20) analytical samples run during a normal analyst’s daily shift. A LRB, LFB, LFM, LFMD, and CCV will be run with each sample batch. Failure of any QC sample in sample batch will require a corrective action and may require the sample batch to be reanalyzed. The definitions of the specific QC samples are described later.

The typical sample batch would be set as:

  • Instrument Start Up
  • Calibration zero
  • Calibration Standards, Quadratic
  • LRB
  • LFB
  • Sample used for LFM/LFMD
  • LFM
  • LFMD
  • Samples (First half of batch)
  • CCV
  • Samples (Second half of batch)
  • CCV

The QC samples are defined as:

Calibration Blank: A volume of reagent water acidified with the same acid matrix as in the calibration standards. The calibration blank is a zero standard and is used to calibrate the ammonia analyzer

Continuing Calibration Verification (CCV): A calibration standard, which is analyzed periodically to verify the accuracy of the existing calibration for those analytes.

Calibration Standard: A solution prepared from the dilution of stock standard solutions. These solutions are used to calibrate the instrument response with respect to analyte concentration

Laboratory Fortified Blank (LFB): An aliquot of reagent water or other blank matrix to which known quantities of the method analytes and all the preservation compounds are added. The LFB is processed and analyzed exactly like a sample, and its purpose is to determine whether the methodology is in control, and whether the laboratory is capable of making accurate and precise measurements.

Laboratory Fortified Sample Matrix/Duplicate (LFM/LFMD) also called Matrix Spike/Matrix Spike Duplicate (MS/MSD): An aliquot of an environmental sample to which known quantities of ammonia is added in the laboratory. The LFM is analyzed exactly like a sample, and its purpose is to determine whether the sample matrix contributes bias to the analytical results. The background concentrations of the analytes in the sample matrix must be determined in a separate aliquot and the measured values in the LFM corrected for background concentrations (Section 9.1.3).Laboratories must validate their methods.

Laboratory Reagent Blank (LRB): A volume of reagent water or other blank matrix that is processed exactly as a sample including exposure to all glassware, equipment, solvents and reagents, sample preservatives, surrogates and internal standards that are used in the extraction and analysis batches. The LRB is used to determine if the method analytes or other interferences are present in the laboratory environment, the reagents, or the apparatus.

Once a sample batch is completed, then some of the QC results are provided in the user’s analytical report and all of the QC results should be recorded in the control charts identified in the accuracy and precision section above.

But having created a batch and performing QC sample analyses, the validity of the user’s analytical results is still not guaranteed. Key conclusion points to consider are:

  1. Laboratories must validate their methods.
  2. Running QC analyses does not guarantee that the user’s specific sample in the batch was analyzed correctly.
  3. QC Charts can provide a detailed overview of laboratory performance in a well-run laboratory.

The user must look beyond the QC data provided in their analytical report or laboratory control charts. Areas to look at will be covered in the next few articles in this series.

Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary, Part 2

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

Editor’s Note: The views expressed in this article are the author’s opinions based on his experience working in the laboratory industry. This is an opinion piece in a series of articles designed to highlight the potential problems that clients may run into with labs. 


In the previous article, I discussed the laboratory’s first line of defense (e.g. certification or accreditation) when a grower, processor or dispensary (user) questions a laboratory result. Now let us look behind this paperwork wall to the laboratory culture the user will encounter once their complaint is filtered past the first line of defense.

It is up to the client (processor, grower or dispensary) to determine the quality of the lab they use.In an ISO 17025 (2005 or 2017) and TNI accreditation, the laboratory must be organized into management, quality and technical areas. Each area can overlap as in the ISO 17025-2017 standard or be required to remain as separate sections in the laboratory as in the ISO 17025-2005 or TNI 2009 standards. ISO 17025 standards (e.g. 2005 and 2017) specifically require a separation of monetary benefits for laboratory results as it applies to the technical staff. This “conflict of interest” (CoI) is not always clearly defined in the laboratory’s day-to-day practices.

One example that I have experienced with this CoI separation violation goes back to my days as a laboratory troubleshooter in the 1990s. I was called into a laboratory that was failing to meet their Department of Defense (DoD) contract for volatile organic hydrocarbon analyses (VOAs) of soil samples by purge trap-gas chromatography-mass spectroscopy. I was required to “fix” the problem. What I determined was:

  • The analytical chemists performing the VOAs analyses were high school graduates with no coursework in chemistry or biology.
  • There was no training program in place for these analysts in instrument use, instrument troubleshooting and interpretation of the analytical results.
  • The only training the analysts received was for simple instrument set-up and basic instrument computer software use. (e.g. Push this button and send results to clerks)
  • Clerks with a high school degree and no analytical chemistry training in the business office generated the final reports and certified them as accurate and complete.

None of the staff was technically competent to perform any in-depth VOAs analytical work nor was the clerical staff competent to certify the results reported.

When I pointed out these discrepancies to the laboratory management, they declined to make any changes. The laboratory management had a direct monetary interest in completing all analyses at the lowest costs within the time limit set by DoD. If the laboratory did not complete the analyses as per the DoD contract, DoD would cancel the contract and not pay the laboratory.

The DoD, in a “Double Blind” test sample, later caught this laboratory.. A Double Blind test sample is used to check to see if the laboratory is performing the tests correctly. The laboratory does not know it is a test sample. So if the laboratory is cheating, they will be caught.This does not mean that all laboratories have staff or management issues

Once the laboratory was caught by DoD with the Double Blind, laboratory management claimed they were unaware of this behavior and management fired all analytical staff performing VOAs and clerical staff reporting the VOAs results to show DoD that it was a rogue group of individuals and not the laboratory management. The fired staff members were denied unemployment benefits as they were fired with cause. So, the moral to this story is if the analytical staff and specifically the clerical staff had wanted to hold the laboratory management accountable for this conflict of interest, they may have been fired, but without cause. The staff would have kept their reputation for honesty and collected unemployment benefits.

I have witnessed the “CoI above repeatedly over the last 30+ years both in laboratories where I have been employed and as a consultant. The key laboratory culture problems that lead to these CoI issues can be distilled into the following categories:

  • Financial CoI: In the financial CoI, the laboratory management must turn out so many analytical test results per day to remain financially solvent. The philosophical change that comes over management is that the laboratory is not producing scientific results, but is instead just churning out tests. Therefore, the more tests the laboratory produces, the more money it makes. Any improvement in test output is to be looked upon favorably and anything that diminishes test output is bad. So, to put this in simple terms: “The laboratory will perform the analyses quickly and get the report sent to the user so the laboratory can be paid. Anything that slows this production down will not be tolerated!” To maximize the Return on Investment (RoI) for the laboratory, management will employ staff that outwardly mirrors this philosophy.
  • I Need This Job CoI: This is the CoI area that poor quality lab technical staff and clerical staff most readily falls into. As outlined in the example above, both the analytical staff and clerical staff lacked the educational credentials, the technical training to be proficient in the use of the analytical instruments, ability to identify problems performing the analytical methods or complications in reporting analytical results. That means they were locked into the positions they held in this specific laboratory. This lack of marketable skills placed pressure on these staff members to comply with all directives from management. What happened to them in the end was regrettable, but predictable. Management can prey on this type of staff limitation.
  • Lack of Interest or Care CoI: This form of CoI is the malaise that infects poor quality laboratories, but can reach a level in management, quality and technical areas as to produce a culture where everyone goes through the moves, but does not care about anything but receiving their paycheck. In my many years of laboratory troubleshooting this type of CoI is the most difficult to correct. Laboratories where I had to correct this problem required that I had to impress on the staff that their work mattered and that they were valued employees. I had to institute a rigorous training program, require staff quality milestones and enforce the quality of work results. During my years of laboratory troubleshooting, I only had to terminate three laboratory staff for poor work performance. Unfortunately after I left many of these laboratories, management drifted back to the problems listed above and the laboratory malaise returned. This proves that even though a laboratory staff can achieve quality performance, it can quickly dissolve with lax management.

So, what are the conclusions of this article?

  • Laboratory culture can place profit over scientific correctness, accuracy and precision.
  • Laboratory management sets the quality of staff that determines the analytical results and report quality the user receives.
  • Laboratory quality can vary from acceptable performance to unacceptable performance over the lifetime of the laboratory depending on management.
  • This does not mean that all laboratories have staff or management issues. It is up to the client (processor, grower or dispensary) to determine the quality of the lab they use.

The next article in this series will introduce the user to the specific Quality Control (QC) analyses that an acceptable laboratory should perform for the user’s sample. These QC analyses are not always performed by accredited laboratories as the specific state that regulates their cannabis program does not require them. The use of these QC samples is another example of how laboratory’s with poor quality systems construct another paper work wall.

VinceSebald

Maintenance and Calibration: Your Customers Are Worth It!

By Vince Sebald
No Comments
VinceSebald

Ultimately, the goal of any good company is to take care of their customers by providing a quality product at a competitive price. You take the time to use good practices in sourcing raw materials, processing, testing and packaging to make sure you have a great final product. Yet in practice, sometimes the product can degrade over time, or you find yourself facing costly manufacturing stoppages and repairs due to downed equipment or instrumentation. This can harm your company’s reputation and result in real, negative effects on your bottom line.

One thing you can do to prevent this problem is to have a properly scaled calibration and maintenance program for your organization.

First, a short discussion of terms:

Balance Calibration
Figure 1– Periodic calibration of an electronic balance performed using traceable standard weights helps to ensure that the balance remains within acceptable operating ranges during use and helps identify problems.

Calibration, in the context of this article, refers to the comparison of the unit under test (your equipment) to a standard value that is known to be accurate. Equipment readings often drift over time due to various reasons and may also be affected by damage to the equipment. Periodic calibration allows the user to determine if the unit under test (UUT) is sufficiently accurate to continue using it. In some cases, the UUT may require adjustment or may not be adjustable and should no longer be used.

Maintenance, in the context of this article, refers to work performed to maximize the performance of equipment and support a long life span for the equipment. This may include lubrication, adjustments, replacement of worn parts, etc. This is intended to extend the usable life of the equipment and the consistency of the quality of the work performed by the equipment.

There are several elements to putting together such a program that can help you to direct your resources where they will have the greatest benefit. The following are some key ingredients for a solid program:

Keep it Simple: The key is to scale it to your operation. Focus on the most important items if resources are strained. A simple program that is followed and that you can defend is much better than a program where you can never catch up.

Written Program: Your calibration and maintenance programs should be written and they should be approved by quality assurance (QA). Any program should include the following: 

  • Equipment Assessment and Identification: Assess each piece of equipment or instrument to determine if it is important enough to be calibrated and/or requires maintenance. You will probably find much of your instrumentation is not used for a critical purpose and can be designated as non-calibrated. Each item should have an ID assigned to allow tracking of the maintenance and/or calibration status.
  • Scheduling System: There needs to be some way to schedule when equipment is due for calibration or maintenance. This way it is easy to stay on top of it. A good scheduling system will pay for itself over time and be easy to use and maintain. A web-based system is a good choice for small to mid-sized companies.
  • Calibration Tolerance Assignment: If you decide to calibrate an instrument, consider what kind of accuracy you actually need from the equipment/instrument. This is a separate discussion on its own, but common rule of thumb is that the instrument should be at least 4 times more accurate than your specification. For very important instruments, it may require spending the money to get a better device.
  • Calibration and Maintenance Interval Assignments: Consider what interval you are going to perform maintenance for each equipment item. Manufacturer recommendations are based on certain conditions. If you use the equipment more or less often than “normal” use, consider adjusting the interval between calibrations or maintenance. 
  • OOT Management: If you do get an Out of Tolerance (OOT) result during a calibration and you find that the instrument isn’t as accurate as you need. Congratulations! You just kept it from getting worse. Review the history and see if this may have had an effect since the last passing calibration, adjust or replace the instrument, take any other necessary corrective actions, and keep it up.

    Maintenance with Checklist
    Figure 2- Maintenance engineers help keep your systems running smoothly and within specification for a long, trouble-free life.
  • Training: Make sure personnel that use the equipment are trained on its use and not to use equipment that is not calibrated for critical measurements. Also, anyone performing calibration and/or maintenance should be qualified to do so. It is best to put a program in place as soon as you start acquiring significant equipment so that you can keep things running smoothly, avoid costly repairs and quality control problems. Don’t fall into the trap of assuming equipment will keep running just because it has run flawlessly for months or years. There are many bad results that can come of mismanaged calibration and/or maintenance including the following:
  • Unscheduled Downtime/Damage/Repairs: A critical piece of equipment goes down. Production stops, and you are forced to schedule repairs as soon as possible. You pay premium prices for parts and labor, because it is an urgent need. Some parts may have long lead times, or not be available. You may suffer reputational costs with customers waiting for delivery. Some calibration issues could potentially affect operator safety as well.
  • Out of Specification Product: Quality control may indicate that product is not maintaining its historically high quality. If you have no calibration and maintenance program in place, tracking down the problem is even more difficult because you don’t have confidence in the readings that may be indicating that there is a problem.
  • Root Cause Analysis: Suppose you find product that is out of specification and you are trying to determine the cause. If there is no calibration and maintenance program in place, it is far more difficult to pinpoint changes that may have affected your production system. This can cause a very significant impact on your ability to correct the problem and regain your historical quality standards of production.

A solid calibration and maintenance program can go a long way to keeping your production lines and quality testing “boring”, without any surprises or suspense, and can allow you to put more sophisticated quality control systems in place. Alternatively, an inappropriate system can bog you down with paperwork, delays, unpredictable performance, and a host of other problems. Take care of your equipment and relax, knowing your customers will be happy with the consistent quality that they have become accustomed to.

California Releases Proposed Emergency Regulations

By Aaron G. Biros
No Comments

Last week, the California Bureau of Cannabis Control released their proposed emergency regulations for the industry. The Bureau, the government agency tasked with regulating California’s cannabis industry, announced the proposed emergency regulations ahead of the highly anticipated January 2018 start date.

The Bureau also published helpful fact sheets and overview documents, providing a good snapshot of the major requirements for different types of licenses. Here are some of the key takeaways:

Temporary licenses will allow businesses to operate for 120 days while their annual license application is being processed. Not surprisingly, local jurisdictions have considerable autonomy. Getting a license seems to be contingent on first getting local approval to operate. According to Josh Drayton, communications and outreach director at the California Cannabis Industry Association (CCIA), working with local governments will be crucial to making progress. “Now that the Brown Administration has created the framework for medical and adult use cannabis, the main challenge we face as an industry is getting local municipalities to move forward with regulations,” says Drayton. “California has a dual licensing process which means that cannabis operators must receive a local permit/license/authorization before being able to apply for a state license. A majority of California cities and counties have yet to finalize their regulations which will delay state licensing.”

The initial reactions to these proposed regulations seem positive, given that this is a culmination of efforts over several years. “The California Cannabis Industry Association welcomes the release of the emergency regulations,” says Drayton. “These regulations represent years of hard work and collaboration between the administration, the regulating departments, and the cannabis industry.”

License Distinctions

A-type licenses are for businesses in the adult-use market, while M-type licenses are for the medical market. Laboratory licenses don’t have this distinction, as they can test both medical and adult-use products.

The record keeping and security requirements seem relatively straightforward, requiring normal surveillance measures like 24-hour video, commercial-grade locks and alarm systems. The rules also lay out guidelines for disposing of waste, including securing it on the premises and not selling it.

Distributors

Distributor licenses appear to have a number of compliance documentation requirements, such as arranging for all product testing, quality assurance and packaging and label accuracy. “Cannabis and cannabis products must pass through a distributor prior to being sold to customers at a retail establishment,” reads the overview the Bureau published. There is also a transport-only distributor license option. Those regulations appear to be more comprehensive than others, with a number of regulations pertaining to appropriate transportation and security measures.

Everything has to be packaged before it gets to retail; Retailers are not allowed to package or label cannabis products on premises. Microbusiness licenses will be available, which should be an exciting new development to follow as the market matures.

Labs

The state will require ISO 17025 accreditation for testing labs. A provisional license is required for a lab to operate in the short term, expiring after 12 months. Laboratory personnel are required to go in the field and do the sampling. Documentation requirements, sample sizes, sampling procedures and storage and transportation rules are also laid out.

Testing labs are required to test for cannabinoids, foreign material, heavy metals, microbial impurities, mycotoxins, moisture content and water activity, residual pesticides, residual solvents and processing chemicals and terpenoids (terpenes). Infused and edible products are required to be tested for homogeneity in THC and CBD concentrations as well. Drayton and the CCIA welcome these new testing regulations, hoping it might improve overall public safety. “We believe that these regulations will address public health issues by mandating the testing of all cannabis products,” says Drayton. “The evolution of the cannabis industry will continue, and we will continue to advocate for good policy that creates solutions for the problems that arise. I believe that we will be visiting and revisiting cannabis regulations for many years to come.”

Certificates of analysis (COA) will be required, showing whether a batch passes or fails testing requirements. Harvest batches that fail testing can be processed for remediation. “Testing laboratories are required to develop and implement a quality assurance program that is sufficient to ensure the reliability and validity of the analytical data produced by the laboratory,” reads the statement on QA and QC.

The Bureau, at the end of their regulatory overview document, lays out some possible enforcement actions, disciplinary actions and citations that could come from noncompliance. “These emergency regulations create a framework for both medical and adult use consumers,” says Drayton.  “January 1, 2018 will be the first date that adults 21 years and older will be able to purchase cannabis without a medical card.”

In the coming weeks, we’ll be breaking down and analyzing the other proposed emergency regulations that the state released. Stay tuned for a breakdown of the California Department of Food & Agriculture (CDFA) regulations on cannabis cultivation, as well as The California Department of Public Health (CDPH) cannabis manufacturing regulations.

Quality Assurance In The Field: Instruments For Growers & Processors

By Aaron G. Biros
2 Comments

As the cannabis marketplace evolves, so does the technology. Cultivators are scaling up their production and commercial-scale operations are focusing more on quality. That greater attention to detail is leading growers, extractors and infused product manufacturers to use analytical chemistry as a quality control tool.

Previously, using analytical instrumentation, like mass spectrometry (MS) or gas chromatography (GC), required experience in the laboratory or with chromatography, a degree in chemistry or a deep understanding of analytical chemistry. This leaves the testing component to those that are competent enough and scientifically capable to use these complex instruments, like laboratory personnel, and that is still the case. As recent as less than two years ago, we began seeing instrument manufacturers making marketing claims that their instrument requires no experience in chromatography.

Instrument manufacturers are now competing in a new market: the instrument designed for quality assurance in the field. These instruments are more compact, lighter and easier to use than their counterparts in the lab. While they are no replacement for an accredited laboratory, manufacturers promise these instruments can give growers an accurate estimate for cannabinoid percentages. Let’s take a look at a few of these instruments designed and marketed for quality assurance in the field, specifically for cannabis producers.

Ellutia GC 200 Series

Shamanics, a cannabis extractor in Amsterdam, uses Ellutia’s 200 series for QA testing

Ellutia is an instrument manufacturer from the UK. They design and produce a range of gas chromatographs, GC accessories, software and consumables, most of which are designed for use in a laboratory. Andrew James, marketing director at Ellutia, says their instrument targeting this segment was originally designed for educational purposes. “The GC is compact in size and lightweight in stature with a full range of detectors,” says James. “This means not only is it portable and easy to access but also easy to use, which is why it was initially intended for the education market.”

Andrew James, marketing director at Ellutia

That original design for use in teaching, James says, is why cannabis producers might find it so user-friendly. “It offers equivalent performance to other GC’s meaning we can easily replace other GC’s performing the same analysis, but our customers can benefit from the lower space requirement, reduced energy bills, service costs and initial capital outlay,” says James. “This ensures the lowest possible cost of ownership, decreasing the cost per analysis and increasing profits on every sample analyzed.”

Shamanics, a cannabis oil extraction company based in Amsterdam, uses Ellutia’s 200 series for quality assurance in their products. According to Bart Roelfsema, co-founder of Shamanics, they have experienced a range of improvements in monitoring quality since they started using the 200 series. “It is very liberating to actually see what you are doing,” says Roelfsema. “If you are a grower, a manufacturer or a seller, it is always reassuring to see what you have and prove or improve on your quality.” Although testing isn’t commonplace in the Netherlands quite yet, the consumer demand is rising for tested products. “We also conduct terpene analysis and cannabinoid acid analysis,” says Roelfsema. “This is a very important aspect of the GC as now it is possible to methylate the sample and test for acids; and the 200 Series is very accurate, which is a huge benefit.” Roelfsema says being able to judge quality product and then relay that information to retail is helping them grow their business and stay ahead of the curve.

908 Devices G908 GC-HPMS

908 Devices, headquartered in Boston, is making a big splash in this new market with their modular G908 GC-HPMS. The company says they are “democratizing chemical analysis by way of mass spectrometry,” with their G908 device. That is a bold claim, but rather appropriate, given that MS used to be reserved strictly for the lab environment. According to Graham Shelver, Ph.D., commercial leader for Applied Markets at 908 Devices Inc., their company is making GC-HPMS readily available to users wanting to test cannabis products, who do not need to be trained analytical chemists.

The G908 device.

Shelver says they have made the hardware modular, letting the user service the device themselves. This, accompanied by simplified software, means you don’t need a Ph.D. to use it. “The “analyzer in a box” design philosophy behind the G908 GC-HPMS and the accompanying JetStream software has been to make using the entire system as straightforward as possible so that routine tasks such as mass axis calibration are reduced to simple single actions and sample injection to results reporting becomes a single button software operation,” says Shelver.

He also says while it is designed for use in the field, laboratories also use it to meet higher-than-usual demand. Both RM3 Labs in Colorado, and ProVerde in Massachusetts, use G908. “RM3’s main goal with the G908 is increased throughput and ProVerde has found it useful in adding an orthogonal and very rapid technique (GC-HPMS) to their suite of cannabis testing instruments,” says Shelver.

Orange Photonics LightLab Cannabis Analyzer

Orange Photonics’ LightLab Cannabis Analyzer

Dylan Wilks, a third generation spectroscopist, launched Orange Photonics with his team to produce analytical tools that are easy to use and can make data accessible where it has been historically absent, such as onsite testing within the cannabis space. According to Stephanie McArdle, president of Orange Photonics, the LightLab Cannabis Analyzer is based on the same principles as HPLC technology, combining liquid chromatography with spectroscopy. Unlike an HPLC however, LightLab is rugged, portable and they claim you do not need to be a chemist to use it.

“LightLab was developed to deliver accurate repeatable results for six primary cannabinoids, D9THC, THC-A, CBD, CBD-A, CBG-A and CBN,” says McArdle. “The sample prep is straightforward: Prepare a homogenous, representative sample, place a measured portion in the provided vial, introduce extraction solvent, input the sample into LightLab and eight minutes later you will have your potency information.” She says their goal is to ensure producers can get lab-grade results.

The hard plastic case is a unique feature of this instrument

McArdle also says the device is designed to test a wide range of samples, allowing growers, processors and infused product manufacturers to use it for quality assurance. “Extracts manufacturers use LightLab to limit loss- they accurately value trim purchases on the spot, they test throughout their extraction process including tests on spent material (raffinate) and of course the final product,” says McArdle. “Edibles manufacturers test the potency of their raw ingredients and check batch dosing. Cultivators use LightLab for strain selection, maturation monitoring, harvesting at peak and tinkering.”

Orange Photonics’ instrument also connects to devices via Wi-Fi and Bluetooth. McArdle says cannabis companies throughout the supply chain use it. “We aren’t trying to replace lab testing, but anyone making a cannabis product is shooting in the dark if they don’t have access to real time data about potency,” says McArdle.