Tag Archives: progeny

Protecting Your Cannabis Plant IP

By Brian J. Amos, Ph.D, Charles R. Macedo, M.S
No Comments

You’ve bred a new strain of cannabis, or perhaps discovered an excellent new hybrid outgrowing the other plants in your cannabis plot. Can you claim the new plant as yours and legally protect it? The short answer is potentially yes. The long answer follows below:

Plant Patents


Since a 1930s’ Act passed by Congress, the US government has permitted a person land, and (ii) asexually reproduces that plant, to apply for a Plant Patent. If granted, the Plant Patent will protect the patent holder’s right to “exclude others from making, using, selling, offering for sale and importing the plant, or any of its parts.” In other words, if you have a Plant Patent, you have a monopoly on that particular plant and its progeny plants, as long as they are asexually reproduced (for example, from cuttings – i.e. a clone). There is a hole in the protection – once you’ve sold or given anyone the plant they can use the seed or pollen from it without your permission.

Originally this sort of coverage was thought to be useful for things like new apple varieties, which are often from spontaneous new mutants found by farmers in their orchards (i.e. “cultivated land”). But is it possible this coverage can be extended to cannabis plants? The answer is yes. Unlike the traditional refusal of the US Patent & Trademark Office (USPTO) to register “offensive” or “disparaging” trademarks on moral grounds, US patent law does not have any well-established “morality exception.” And, indeed, Plant Patents have already been issued for cannabis strains. In December 2016, US Plant Patent No. 27,475 was issued for a cannabis plant called “Ecuadorian Sativa.” This plant is said to be distinct in its exceptionally high level of a particular terpene (limonene) at levels of 10 to 20 times the usual range, and is a single variety of a cross between what are commonly named as Cannabis sativa and Cannabis indica.

How do you get a Plant Patent? Firstly – a Plant Patent is not automatically granted. The application has to be written correctly, and the USPTO will examine it to determine if your plant is new and distinct (non-obvious) from other known varieties, that it is described as completely as is reasonably possible, and that it has been asexually propagated. In addition, if the plant was “discovered” as opposed to “invented” then the USPTO will need to be shown that it was found in a cultivated area. A plant discovered simply growing wild cannot be patented. If you pass these hurdles, you will have a Plant Patent that lasts for 20 years.

Utility Patent
 

Another type of patent that can protect your new cannabis plant, and much more besides that, is a Utility Patent. Utility Patents have a longer history than Plant Patents in the US and, while they may be harder to obtain, a Utility Patent gives you broader protection than a Plant Patent. A Utility Patent can cover not only the plant itself, but if properly written can also cover parts of the plant, uses of the plant, methods used to create the plant, methods for processing the plant, and even edibles (like brownies) that contain an extract from that plant. If granted, the Utility Patent will protect your right, for 20 years from the date you filed the application, to “exclude others from making, using, offering for sale, or selling the invention throughout the United States or importing the invention into the United States.” An additional protection is that if the invention you claim in the patent is a “process,” you can assert the Utility Patent to exclude others from importing into the United States any products made by that process. Of course, given that present U.S. federal law regards cannabis as a DEA Schedule 1 drug, this importation blocking right is currently irrelevant. Nevertheless, it should be remembered that utility patents have a 20-year term, and Federal law may shift during that time.

Utility Patents are harder to obtain than Plant Patents. The USPTO will examine your application to determine whether what you are claiming protection on (for example: plants, cells, methods or processes) is new and non-obvious, does not cover a naturally occurring product or process, and is fully described. The simple description used in a Plant Patent is not enough for the more rigorous description needed in a Utility Patent. In addition, meeting the “enablement requirement” of a Utility Patent may require you to have the plant strain deposited with a recognized depository which will maintain that specimen plant – and you must agree that the public is permitted to access that deposit if a Utility Patent is granted to you.

So has the US government granted any patents on cannabis plants? Yes it has, multiple patents. A recent example is US Utility Patent No. 9,095,554 granted to Biotech Institute LLC (Los Angeles), which covers hybrid cannabis plants of a particular type with a CBD content of greater than 3%, as well as methods of breeding or producing them. Biotech Institute was also granted claims in the same Utility Patent for cannabis extracts from those plants, and edibles containing the extract. In this case, the plant samples were deposited with the NCIMB, which is a recognized depository in Aberdeen, Scotland. It should be noted that while the depository has to be internationally recognized, it does not have to be in the US. Another corporation, GW Pharma Ltd. (a UK firm), was early in the game and, according to USPTO records, has more than 40 U.S. Utility Patents issued relating to cannabis in some form or another, the earliest dating back to 2001.

Plant Variety Protection Act


A third type of protection is potentially available under the Plant Variety Protection Act (PVPA) if you breed a new cannabis plant by sexual reproduction. Colloquially, this protection is more often known as “breeder’s rights” and the USDA administers it. This right is not mutually exclusive with other protections – in 2001 the U.S. Supreme Court ruled that that sexually reproduced plants eligible for protection under the PVPA are also eligible for Utility Patents.

In theory, obtaining a PVPA certificate is a relatively straightforward procedure for seed reproduced plants, which are new, distinct, uniform and stable. If you are granted a PVP certificate it will last for 20 years from the grant date. You can bring a civil action against someone who sells, offers for sale, delivers, ships or reproduces the covered plant. So have any PVPA Certificates been issued for new cannabis strains? We have reviewed the USDA published certificates for the last two years and have not found any. Why is this? One obstacle may be what happens after you file your application. The US code governing these certificates states that a seed sample “will be deposited and replenished periodically in a public repository.” However, the government body that administers the PVPA, the USDA, specifically requires that all applicants submit a seed sample of at least 3,000 seeds with an 85% or more germination rate within 3 months of filing the application. Sending cannabis seeds in the mail to a federal agency – that’s a deterrent given current uncertainty. Ironically, the location that the seeds must be sent to is Fort Collins in Colorado, a state where cannabis has been decriminalized. The USDA’s published PVPA guidance describes courier delivery of the seed sample to the Fort Collins repository, but does not mention hand delivery of the seed samples. We contacted the seed depository and were informally told that seed samples can be deposited by hand delivery – but this still entails handing over to a federal agency actual seeds of a plant which is a DEA Schedule 1 drug. In any event, no PVPA Certificates that have yet been issued for new cannabis strains. It is possible that a new federal administration might deschedule cannabis, permitting an easier route to PVPA coverage. But for the present at least, PVPA protection may be hard to obtain.

Notice

The views expressed herein are those of the authors and do not necessarily represent those of Amster, Rothstein & Ebenstein, LLP, or its clients. Nothing in this article is to be construed as legal advice or as a substitute for legal advice.

Applications for Tissue Culture in Cannabis Growing: Part 2

By Aaron G. Biros
2 Comments

In the first part of this series, we introduced Dr. Hope Jones, who took her experience in tissue culture from NASA and brought it to the cannabis industry and C4 Laboratories. We discussed some of the essential concepts behind tissue culture and defined a few basic terms like micropropagation, totipotency, explants and cloning. Now let’s get into some of the issues with cloning from mother plants and the advantages that come with using tissue culture for propagating and cultivating cannabis.

Time & Resources

Dr. Hope Jones, chief scientific officer at C4 Labs

Taking cuttings from mother plants is arguably the most popular method of propagating cannabis plants. It is a process that requires significant real estate, resources and labor. “Moms can take up a great deal of space that is not contributing directly to production,” says Dr. Jones. “I know from experience that scaling up production and/or adding new strains to the production line requires significant time and resources to raise and maintain new healthy and productive mother plants.” Each mother plant produces a limited number of clones per harvest period and over the course of her life cycle.

By using tissue culture, a cultivator can generate an almost infinite number of clones from one plant cutting. With so many growers calculating their costs-per-square-foot, micropropagation is an effective tool to save space, labor and time, thus increasing profit margins. “Just to put it in perspective: Holly Scoggins’ book Plants From Test Tubes, cites a Day Lily cultivator who uses micropropagation to produce 1,000 plants in 30 square feet of shelf space each week,” says Dr. Jones. “Using conventional methods, one would need a half-acre to produce the same amount of plants.” Cultivators can produce a much greater number of plants-per-square-foot by using micropropagation effectively.

Damage from whiteflies, thrips and powdery mildew is all visible on this sick plant.

Early Health & Vigor

Most tissue culture methods use sterilized vessels that contain sugar-rich media to support growth of plantlets before they can photosynthesize on their own. “The media is prepped, poured into vessels, and placed in an autoclave (or pressure cooker) where it is subjected to high temps and pressure to achieve proper sterility.”

The sterile environment and rich growth media supplies plantlets with an abundance of everything they need. “When plantlets emerge from culture, they are pathogen-free, with a stockpile of food and nutrient reserves that support rapid growth and vigor, superior to conventional cuttings,” says Dr. Jones.

Stress & Disease

As any grower knows, mother plants can sometimes experience stress and disease. This might come in the form under or over-watering, heat stress, spider mites, whiteflies, mold and viruses. “Any stress or infection that a mother plant is subjected too can impact progeny health and productivity in a couple of ways,” says Dr. Jones.

Powdery mildew starts with white/grey spots seen on the upper leaves surface
Tobacco Mosaic Virus symptoms can include tip curling, blotching of leaf mosaic patterning, and stunting.

For example, diseases like powdery mildew and tobacco mosaic virus are often systemic, meaning that pathogens have spread to almost every tissue in the plant. Once infected, it is impossible to completely eliminate pathogens from tissues. Therefore any cuttings made from a diseased mother plant, even if they look perfectly healthy, will also be infected and can eventually present disease symptoms like reduced productivity and/or plant death, according to Dr. Jones.

How does tissue culture get around this problem? Remember that explants (small tissue samples used as starting material) can be extracted from any part of the plant. Meristematic cells in shoot tips and leaves are the source of new plant growth. Dr. Jones explains that these cells, and the first set of primordial leaves are not connected directly to the vascular tissue, the plant’s transport system by which pathogens spread. Therefore, meristematic cells tend to be disease-free, whatever the condition of the mother. It takes a sharp blade, a dissecting microscope, and a lot of experience to learn, but as Dr. Jones explains, “harvesting explants from meristems is a routine micropropagation technique used by ‘Big Horticulture.’ One example is the strawberry. Viruses and pathogens are so prevalent that the strawberry industry must use meristematic culture to ensure pathogen free progeny.”

Epigenetics

Now let’s talk about epigenetics. We know that plants don’t have the option of physically moving away from stress or predation. Instead, they have evolved sophisticated ways of changing their own biology to adapt to and/or protect themselves. “Consider what happens to a mom exposed to a pathogen. The infected plant will start expressing (turning on) genes and making proteins that contribute to pathogen resistance,” says Dr. Jones. “These changes to gene expression are partly regulated by epigenetic modifications, chemical changes to DNA that increase or decrease the likelihood a cell will express a particular gene, but that do not actually modify the gene itself. Like annotations to a piece of music, epigenetic modifications don’t change the notes but rather how loud or soft, quickly or slowly the notes are played.”

There are more than 1,000 different viruses and mixed infections are very common

This is where it gets interesting. “Epigenetic modifications can be systemic and long lived. Plants infected by a pathogen or stressed by drought will present widespread epigenetic modifications to their DNA,” says Dr. Jones. “For an annual plant like cannabis, those modifications are relatively permanent. Thus a cutting from a mom having drought or pathogen adapted epigenetic programming will inherit that modified DNA and behave as if it were experiencing that stress, whether present or not.”

In the wild, this adaptability is critical for plant survival and reproduction, but to a grower, this is a less-than-ideal scenario. “The epigenetic modifications allowed the mother to tolerate the stress, which is great from the perspective of survival and fitness, but it comes at a cost. Some of the finite energy and resources that usually support plant growth and reproduction are instead channeled to stress response,” says Dr. Jones. This trade off results in reduction in overall plant yield and quality. “Those epigenetic changes result in a new phenotype for that mother,” says Dr. Jones. “All cuttings from her will reflect the new phenotype. This is one major mechanism underlying what many in the cannabis industry (incorrectly) call ‘genetic drift,’ or the loss of vigor over successive clonal generations.”

This is again where tissue culture can be such a game changer. The process of dedifferentiation, as explained in part 1 of this series, can rejuvenate a “tired” mother plant by inducing a kind of reboot– clearing accumulated epigenetic modifications that negatively impact progeny vigor and productivity. In the third part of this series, we will discuss the five stages of micropropagation, detailing the process of how you can grow plantlets in tissue culture. Stay tuned for more!