Tag Archives: plant

How To Select The Best Monitoring System For Your Cannabis Greenhouses

By Rob Fusco
No Comments

Maintaining an environment that supports cultivation and keeps plants healthy is not an easy task. In cannabis growing, there are a variety of factors that greenhouse managers and personnel must monitor to ensure that their plants are in a healthy environment that fosters growth and development. Temperature, humidity, lighting and CO2 levels are a few of the conditions that need to be tailored to each cannabis greenhouse operation. However, it can be difficult to constantly monitor the status of your equipment and the greenhouse environment, especially after hours or during the off-season.

A remote monitoring system that’s properly selected and installed can help greenhouse managers keep their cannabis plants healthy, multiply their yields and increase return on investment. This type of system also helps operators identify patterns and trends in environmental conditions and get insight into larger issues that can prevent problems before they arise.

Cloud-based monitoring system base unit in weatherproof enclosure

Here are some tips on key conditions to monitor and what you need to consider when selecting a monitoring system for your cannabis greenhouse operation:

Temperature

Temperature plays a crucial role in any cannabis grow operation. The climate in your greenhouse must be warm enough to nurture photosynthesis and the growth of cannabis plants. Setting the incorrect temperature will significantly impact the potential yield of the plant and the rate at which it develops. A temperature too low will slow the growth of the cannabis, but too hot can lead to heat stress for your plants. The ideal temperature for a standard greenhouse is between 70 and 80 degrees Fahrenheit. However, depending on the stage of plant and desired growth densities, the temperature of the greenhouse needs to be adjusted accordingly.

Humidity Levels

Humidity directly affects plant photosynthesis and transpiration, so controlling humidity is vital in greenhouse growing. The ideal relative humidity (RH) for cannabis growth is around 60%. A low humidity level can cause water to evaporate too quickly for photosynthesis, while a humidity level that is too high can cause poor growth and possible mold and fungal disease. Monitoring the moisture content in the air of your greenhouse will help the plants during the transpiration process, increasing absorption of nutrients and overall health of the cannabis. 

Lighting

Your cannabis may be getting an abundance of natural light during the summer months, but maintaining adequate sunlight during the winter months can be a challenge. As a solution to this, many greenhouse managers equip their facilities with additional lights to supplement natural light during off-seasons or off-hours. To achieve the best possible yield, a cannabis plant in the budding stage should receive twelve hours of light each day, while other stages could require additional lighting. For example, the growth stage could require your cannabis to be exposed to sunlight for up to eighteen hours a day.

CO2 Levels

Like any other plant, cannabis requires CO2 to breathe. Greenhouse managers must set and monitor the CO2 levels in their facility to make sure that there is an adequate amount for the plants to develop, grow and be healthy. The amount of carbon dioxide required for your cannabis depends of the size of the facility and the amount of light the plants are receiving. However, a standard grow area for cannabis can maintain a CO2 range from 1000 to 1500 parts per million (PPM). A level below that threshold can result in slower growth of the plants, while a level above would lead to unused and wasted CO2.

Soil moisture sensor

Irrigation and Soil Moisture

One way to ensure a good yield from your cannabis is to water it regularly and monitor your soil moisture. Overwatering your plants can have the same effect, if not worse, than letting the soil become too dry. Plants’ roots need oxygen to survive, unlike leaves that breathe CO2, and when the soil is waterlogged the roots can’t provide their function. The lack of oxygen interferes with the roots’ nutrient uptake and photosynthesis causing the cannabis plant to wilt. The exact moisture content of the soil depends on the size of your greenhouse, temperature and humidity. Whether you hand water or are using a drip irrigation system, being aware of your soil moisture is vital to the long-term health of your cannabis.

Air Circulation

Your greenhouse environment should mimic the ideal conditions in which cannabis plants flourish. With an indoor facility, you have the ability to control air circulation by venting hot air out and blowing fresh air in. Creating a circulation of air inside your greenhouse will increase your cannabis plant’s growth speed and yield. Additionally, an exhaust system helps control the temperature and humidity, while also preventing the invasion of mold and pests that thrive in hot, stagnant air.

Greenhouse Security

When growing something of value, like cannabis, there will always be a threat of intruders. Whether your greenhouse is in a populated area or around hungry wildlife, any intruder could be detrimental to your overall yields and profit. Remote monitoring systems can give you peace of mind and instantly alert you when there is an unwanted presence in your greenhouse.

Knowing all the possible threats to your cannabis greenhouse helps you evaluate your specific needs, and ultimately identify the proper remote monitoring system.

Selecting the Right Monitoring System

Other factors to consider when choosing a monitoring system right for your operation include:

  • Base unit and sensors
  • Wireless or hardwired sensors
  • Communications to your site (Phone, cellular, Wi-Fi, etc.)
  • Alarm notification
  • Programming and status checks
  • Data logging
  • Return on investment

Base Units and Sensors

Each condition in your greenhouse that you want to monitor requires its own input on the base unit of the monitoring system. You must match your needs with the number of inputs available. A good fit for a smaller cannabis greenhouse may be a lower-cost, non-expandable monitoring system. However, larger facilities have many monitoring points and more people to alert when there’s a problem. If your cannabis operation is poised for growth, purchasing an expandable system could add value to the initial purchase because you wouldn’t have to replace your entire system in the future.

Your monitoring system should also have an internal rechargeable battery backup to ensure continuous monitoring and alerts in the event of a power outage. It is also recommended to have each base unit in a sheltered enclosure to protect it from moisture, dirt and other hazards.

Placement of sensors is also crucial. For example, temperature sensors in your greenhouse should be placed throughout the facility. They should be next to your thermostat and in the center of your greenhouse, preferably away from direct sunlight.

Wireless or Hardwired Sensors

Remote monitoring systems offer the option to have sensors hardwired directly to the base unit or sensors wirelessly connected. A hardwired monitoring system connects the sensors to the base device with wires. Generally, trenching long distances for wires is time consuming and costly. So alternatively, a wireless system uses built-in radio transmitters to communicate with the base unit. Some monitoring systems can accommodate a combination of hardwired and wireless sensors.

Communications to Your Site

Monitoring devices that use cellular communications must be registered on a wireless network (like Verizon or AT&T) before you can send or receive messages. Because cellular devices perform all communications over a wireless network, it is important that there be sufficient signal strength at the greenhouse. It is a good idea to check the signal quality in the area before purchasing a cellular product. If the cellular network has less than desirable coverage, it is possible to install an external antenna to help increase cellular signal.

Alarm Notifications

When monitoring systems identify a change in status, they immediately send alerts to people on the contact list. If you don’t want all of your personnel to receive notifications at the same time, certain devices can be programmed to send alerts in a tiered fashion. It is important to consider the reach of the communications, so that you’ll be notified regardless of your locations. Multiple communications methods like phone, email and text provide extra assurance that you’ll get the alert. Also, note of the number of people the system can reach and if the system automatically cycles through the contact list until someone responds. Make sure the system allows for flexible scheduling so that it doesn’t send alarms to off-duty personnel.

Programming and Status Check

If you’re responsible for maintaining a commercial greenhouse facility, you want a system that will provide real-time status of all monitored conditions on demand. There are a few different ways to access your sensor readings. Options include calling to check status, viewing a web page, either on a local network or on the cloud, or accessing the information via an app on your mobile device. With a cloud-based system, the devices supervise themselves. This means if the internet or cellular connection goes down, the device will send an alarm to alert the appropriate personnel.

If you don’t select a cloud-based system, you will be limited to logging in through a local area network, which will allow you to make programming changes, access status conditions and review data logs. If internet connectivity is not available at your location, you will want to choose a cellular or phone system rather than Ethernet-based option.

Data Logging

Sample greenhouse monitoring data log

Data history is valuable in identifying patterns and trends in your cannabis greenhouse conditions. Manually monitoring and recording environmental parameters takes a significant amount of personnel time and detracts from other important workplace demands. However, many monitoring systems automatically save information, recording tens of thousands of data points, dates and times. Cloud-based logging provides an unlimited number of records for users to view, graph, print and export data trends.

Analyzing data samples may lend insight to larger issues and prevent problems before they arise. For example, if the data log shows power fluctuations occurring at a regular time, it could be indicative of a more serious problem. Or, if the data shows signs of a ventilation fan or supplementary lighting beginning to malfunction, they can be repaired or replaced before total failure occurs.

Return On Investment

When deciding how much you should pay for a remote monitoring system, tally up the entire cost, fully installed with additional peripherals and sensors and any labor fees for installation. Then consider the value of your cannabis plant inventory and greenhouse equipment. Finally, factor in the cost of downtime, should an environmental event shut down your operation for a period of time.

Final Thoughts

Choosing the right greenhouse monitoring system and sensors could mean the difference between life and death for your cannabis plants. Understanding the conditions you need to watch and monitoring systems’ capabilities are they best way to protect your investment.

 

Applications for Tissue Culture in Cannabis Growing: Part 3

By Aaron G. Biros
4 Comments

In the first part of this series, we introduced some relevant terms and principles to tissue culture micropropagation and reviewed Dr. Hope Jones’ background in the science of it. In the second part, we went into the advantages and disadvantages of using mother plants to clone and why tissue culture could help growers scale up. In the third part of this series, we are going to examine the five steps that Dr. Jones lays out to successfully micropropagate cannabis plants from tissue cultures.

Cleaning – Stage 0

Explant cuttings are obtained from mother plants. The cuttings are further separated into smaller stem pieces with a single node.

Micropropagation includes 5 stages. “Stage 0 is the preparation of mother plants and harvest of cuttings for the explant material,” says Dr. Jones. “To ensure the best chance of growing well in culture, those ladies [the mom’s] should be cleaned up and at their best. And hopefully not stressed by insects or pathogens.” She says growers should also make sure the plants are properly fertilized and watered before harvesting explants. “Obtaining the explants is done with a clean technique using new disposable blades and gloves,” says Dr. Jones. “Young shoot tips are harvested and placed in labeled, large Ziploc bags with a small amount of dilute bleach and surfactant solution, then placed in a cooler and taken to the lab.” This is a process that could be documented with record keeping and data logs to ensure the same care is taken for every explant. “Once in the lab, working in the sterile environment of the transfer hood, the cuttings are sterilized, typically with bleach and a little surfactant, and then rinsed several times with sterile water,” says Dr. Jones. Once they reach the sterile environment, Dr. Jones removes the leaves and cuts the stem down to individual nodes.

Establishment – Stage 1

Established explants propagating shoots

Establishment essentially means waiting for the shoots to develop. Establishing the culture requires an absolutely sterile environment, which is why the first step is so important. “Proper explant disinfection is equally as important is the control parameters of the facility itself,” says Dr. Jones. Mother plants are not grown in sterile facilities, but in an environment that is invariably contaminated with dust, which harbors micro-organisms, insects and other potential sources of contamination, including human handling. We discussed some of this in Part 2.

Explants, once sterilized and placed in the culture vessel, must establish to the new aseptic conditions. “Basically Stage 0 ends when the explants are cleaned and placed in the vessel. Stage 1 begins on the shelf while we patiently sit, watch and wait for the shoot growth,” says Dr. Jones. “Successful establishment means we properly disinfected the explants because the cultures do not become contaminated with bacteria or fungi and new shoot growth emerges.”

Multiplication – Stage 2

Stage 2 involves subculturing an explant to produce new shoots

This stage is rather self-explanatory as multiplication simplified means generating many more shoots per explant. In order to create a large number of plants needed for meeting the demand of weekly clone orders, Dr. Jones can break up, or subculture, one explant that contains multiple numerous new shoots. “Let’s say one vessel, which originally started with 4 explants each developed four new shoots. Working in the hood, I remove each explant from the vessel and place it on a sterile petri dish. Now I can divide each explant into 4 new explants and then place the four new explant cuttings into their own vessel. In this example, we started with one vessel with 4 explants,” says Dr. Jones. “Which when subcultured 4-6 weeks later, we now have 4 vessels with 16 plants.” This is instrumental in understanding how tissue culture micropropagation can help growers scale without the need for a ton of space and maintenance. From a single explant, you can potentially generate 70,000 plants after 48 weeks, according to Dr. Jones. “Starting with not 1, but 10 or 20 explants would significantly speed up multiplication.” Using tissue culture effectively, one can see how a grower can exponentially increase their production.

Rooting – Stage 3

“When the decision is made to move cultures to the rooting stage, we typically need to subculture the plantlets to a different media formulated to induce rooting,” says Dr. Jones. “In some instances, the media is very dark, and that’s because of the addition of activated charcoal.” Using activated charcoal, according to Dr. Jones, helps darken the rooting environment, which closely mimics a normal rooting environment. “It helps remove high levels of cytokinin and other possible inhibitory compounds,” says Dr. Jones. Cytokinins are a type of plant growth hormone commonly used to promote healthy shoot growth, but it is important to make sure the culture contains the right ratio of hormones, including cytokinin and auxin for maximum root and shoot development. Dr. Jones suggests that growers research their own media formulation to ensure nice, healthy roots develop and that no tissue dies in the process. “With everything I grow in culture, when it comes to media, in any stage and with all new strains, I run some simple experiments in order to refine the media used,” says Dr. Jones. She puts a special focus on the concentrations and ratios of plant hormones in formulating her medias.

After harvesting and multiplying, these explants are ready for rooting

“We commonly think of auxin’s role in rooting, but it’s also important in leaves and acts as a regulator of apical shoot dominance,” says Dr. Jones. “So having no auxin may not be ideal for the shooting media used in Stages 1 and 2.” Auxin is a plant hormone that can help promote the elongation of cells, an important step in any plant’s growth. “And cytokinins are typically synthesized in the root and moves through xylem to shoots to regulate mitosis as well as inducing lateral bud branching, so again finding that nice balance between these two hormones is key.”

Acclimation & Hardening Off – Stage 4

“When plants have developed good looking healthy roots, it’s time to pop the top,” says Dr. Jones. This means opening the vessel, another risk for contamination, which is why having a clean environment is so crucial. “The location of these vessels needs to be tightly controlled for light, relative humidity, temperature and cleanliness.” In the culture, sugar is a main ingredient in the medium, because the growing explants are not very photosynthetically active. “By opening the lid of the vessel, carbon dioxide is introduced to the environment, which promotes and enhances photosynthesis, really getting the plants ready for cultivation.”

Harvesting explant material from mother plants

The very final step in tissue culture micropropagation is hardening, which involves the formation of the waxy cuticle on the leaves of the plant, according to Dr. Jones. This is what preps the plant to actually survive in an unsterile environment. “The rooted plants are removed from the culture vessel, the media washed off and placed in a potting mix/matrix or plug and kept in high humidity and low light,” says Dr. Jones. “Now that there is no sugar, contamination is no longer a threat, and these plants can be moved to the grow facility.” She says conditioning these plants can take one or two weeks. Over that time, growers should gradually increase light intensity and bring down the relative humidity to normal growing conditions.

Overall, this process, if done efficiently, can take roughly eleven weeks from prepping the explants to acclimation and hardening. If growers perform all the steps correctly and with extra care to reduce risks of contamination, one can produce thousands of plants in a matter of weeks.

In the fourth and final part of this series, we are going to dive into implementation. In that piece, we will discuss design principles for tissue culture facilities, equipment and instrumentation and some real-world case studies of tissue culture micropropagation.

NCIA: 280E, Federal Reform & Cannabis Lobbying Efforts

By Aaron G. Biros
No Comments

With the 2017 Cannabis Business Summit just around the corner, we sat down with Taylor West, deputy director of the National Cannabis Industry Association (NCIA), to hear about their lobbying efforts and what they’ll discuss in the keynote panel discussion on Taxes, 280E and the Path to Federal Reform. Henry Wykowski, Esq., attorney, Steve DeAngelo, founder of Harborside Health Center and Michael Correia, director of Government Relations for NCIA will join her on that panel discussion.

According to West, the 280E tax code issue has an enormous impact on the industry. This tax code essentially means that businesses cannot make deductions for normal business operations from the sale of schedule I narcotics. Because cannabis is still listed as schedule I, businesses touching the plant often pay a majority of their profits to federal taxes. “When they are handing over 80% of their profit to the federal government, which is a lot of money that isn’t being pumped into the local economy, that is a big problem,” says West. “We want to highlight how 280E isn’t just harmful to businesses, but also harmful to the local economies and states that have businesses dealing with cannabis in them.” As the primary organization lobbying on behalf of the cannabis industry in Washington D.C., they have three full-time staff as well as a contracted lobbying firm working there. “We are the voice on Capitol Hill for the businesses of the cannabis industry,” says West. “We primarily focus on a couple of core issues, and one of them is 280E tax reform since that is such a significant issue for our members touching the plant.”

Taylor West, deputy director of NCIA

Another important issue they have been lobbying on is banking access. According to West, banks and credit unions are regulated on the federal level, and as a result, are largely still reluctant to serve cannabis businesses. “The inconsistency between federal and state law means they are concerned their federal regulators will flag them for working with cannabis businesses,” says West. “It is very difficult to operate without a bank account- this creates a lot of transparency, logistical and safety issues. We are working with lawmakers to try and make a change in the law that would make it safe for banks to serve state-legal cannabis businesses.” NCIA’s lobbying efforts have long engaged a few core allies on Capitol Hill, including the representatives that formed the Congressional Cannabis Caucus. “They have been champions of broader reform issues around cannabis,” says West. “But we are also starting to see new faces, new members of congress getting interested in these issues, beyond the traditional champions.” A lot of NCIA’s recent lobbying efforts have focused on recruiting members of Congress for those issues.

One example of their success came by teaming up with Rep. Carlos Curbelo, a Republican Congressman from Florida serving on the House committee overseeing tax issues. “He hasn’t previously been involved with cannabis legislation, but because Florida moved forward with the medical program, he got more interested in the issue and we helped educate him about the problem with 280E,” says West. “Having a republican that sits on the committee dealing with these issues is a huge step forward as we build the case for reform in D.C.” A lot of these efforts will be discussed in greater detail at the upcoming Cannabis Business Summit June 12-14. “We want to talk about the work we are doing just now in Washington D.C.; we have been doing a significant amount of work helping to draft legislation that would fix the 280E issue,” says West. “We will talk about those efforts as well as what businesses are currently doing to deal with the issue of 280E.” For readers interested in getting tickets, seeing the agenda and learning more about NCIA’s lobbying efforts, click here.

Applications for Tissue Culture in Cannabis Growing: Part 2

By Aaron G. Biros
No Comments

In the first part of this series, we introduced Dr. Hope Jones, who took her experience in tissue culture from NASA and brought it to the cannabis industry and C4 Laboratories. We discussed some of the essential concepts behind tissue culture and defined a few basic terms like micropropagation, totipotency, explants and cloning. Now let’s get into some of the issues with cloning from mother plants and the advantages that come with using tissue culture for propagating and cultivating cannabis.

Time & Resources

Dr. Hope Jones, chief scientific officer at C4 Labs

Taking cuttings from mother plants is arguably the most popular method of propagating cannabis plants. It is a process that requires significant real estate, resources and labor. “Moms can take up a great deal of space that is not contributing directly to production,” says Dr. Jones. “I know from experience that scaling up production and/or adding new strains to the production line requires significant time and resources to raise and maintain new healthy and productive mother plants.” Each mother plant produces a limited number of clones per harvest period and over the course of her life cycle.

By using tissue culture, a cultivator can generate an almost infinite number of clones from one plant cutting. With so many growers calculating their costs-per-square-foot, micropropagation is an effective tool to save space, labor and time, thus increasing profit margins. “Just to put it in perspective: Holly Scoggins’ book Plants From Test Tubes, cites a Day Lily cultivator who uses micropropagation to produce 1,000 plants in 30 square feet of shelf space each week,” says Dr. Jones. “Using conventional methods, one would need a half-acre to produce the same amount of plants.” Cultivators can produce a much greater number of plants-per-square-foot by using micropropagation effectively.

Damage from whiteflies, thrips and powdery mildew is all visible on this sick plant.

Early Health & Vigor

Most tissue culture methods use sterilized vessels that contain sugar-rich media to support growth of plantlets before they can photosynthesize on their own. “The media is prepped, poured into vessels, and placed in an autoclave (or pressure cooker) where it is subjected to high temps and pressure to achieve proper sterility.”

The sterile environment and rich growth media supplies plantlets with an abundance of everything they need. “When plantlets emerge from culture, they are pathogen-free, with a stockpile of food and nutrient reserves that support rapid growth and vigor, superior to conventional cuttings,” says Dr. Jones.

Stress & Disease

As any grower knows, mother plants can sometimes experience stress and disease. This might come in the form under or over-watering, heat stress, spider mites, whiteflies, mold and viruses. “Any stress or infection that a mother plant is subjected too can impact progeny health and productivity in a couple of ways,” says Dr. Jones.

Powdery mildew starts with white/grey spots seen on the upper leaves surface
Tobacco Mosaic Virus symptoms can include tip curling, blotching of leaf mosaic patterning, and stunting.

For example, diseases like powdery mildew and tobacco mosaic virus are often systemic, meaning that pathogens have spread to almost every tissue in the plant. Once infected, it is impossible to completely eliminate pathogens from tissues. Therefore any cuttings made from a diseased mother plant, even if they look perfectly healthy, will also be infected and can eventually present disease symptoms like reduced productivity and/or plant death, according to Dr. Jones.

How does tissue culture get around this problem? Remember that explants (small tissue samples used as starting material) can be extracted from any part of the plant. Meristematic cells in shoot tips and leaves are the source of new plant growth. Dr. Jones explains that these cells, and the first set of primordial leaves are not connected directly to the vascular tissue, the plant’s transport system by which pathogens spread. Therefore, meristematic cells tend to be disease-free, whatever the condition of the mother. It takes a sharp blade, a dissecting microscope, and a lot of experience to learn, but as Dr. Jones explains, “harvesting explants from meristems is a routine micropropagation technique used by ‘Big Horticulture.’ One example is the strawberry. Viruses and pathogens are so prevalent that the strawberry industry must use meristematic culture to ensure pathogen free progeny.”

Epigenetics

Now let’s talk about epigenetics. We know that plants don’t have the option of physically moving away from stress or predation. Instead, they have evolved sophisticated ways of changing their own biology to adapt to and/or protect themselves. “Consider what happens to a mom exposed to a pathogen. The infected plant will start expressing (turning on) genes and making proteins that contribute to pathogen resistance,” says Dr. Jones. “These changes to gene expression are partly regulated by epigenetic modifications, chemical changes to DNA that increase or decrease the likelihood a cell will express a particular gene, but that do not actually modify the gene itself. Like annotations to a piece of music, epigenetic modifications don’t change the notes but rather how loud or soft, quickly or slowly the notes are played.”

There are more than 1,000 different viruses and mixed infections are very common

This is where it gets interesting. “Epigenetic modifications can be systemic and long lived. Plants infected by a pathogen or stressed by drought will present widespread epigenetic modifications to their DNA,” says Dr. Jones. “For an annual plant like cannabis, those modifications are relatively permanent. Thus a cutting from a mom having drought or pathogen adapted epigenetic programming will inherit that modified DNA and behave as if it were experiencing that stress, whether present or not.”

In the wild, this adaptability is critical for plant survival and reproduction, but to a grower, this is a less-than-ideal scenario. “The epigenetic modifications allowed the mother to tolerate the stress, which is great from the perspective of survival and fitness, but it comes at a cost. Some of the finite energy and resources that usually support plant growth and reproduction are instead channeled to stress response,” says Dr. Jones. This trade off results in reduction in overall plant yield and quality. “Those epigenetic changes result in a new phenotype for that mother,” says Dr. Jones. “All cuttings from her will reflect the new phenotype. This is one major mechanism underlying what many in the cannabis industry (incorrectly) call ‘genetic drift,’ or the loss of vigor over successive clonal generations.”

This is again where tissue culture can be such a game changer. The process of dedifferentiation, as explained in part 1 of this series, can rejuvenate a “tired” mother plant by inducing a kind of reboot– clearing accumulated epigenetic modifications that negatively impact progeny vigor and productivity. In the third part of this series, we will discuss the five stages of micropropagation, detailing the process of how you can grow plantlets in tissue culture. Stay tuned for more!

Applications for Tissue Culture in Cannabis Growing: Part 1

By Aaron G. Biros
2 Comments

Dr. Hope Jones, chief scientific officer of C4 Laboratories, believes there are a number of opportunities for cannabis growers to scale their cultivation up with micropropagation. In her presentation at the CannaGrow conference recently, Dr. Jones discussed the applications and advantages of tissue culture techniques in cannabis growing.

Dr. Hope Jones, chief scientific officer at C4 Labs

Dr. Jones’ work in large-scale plant production led her to the University of Arizona Controlled Environment Agriculture Center (CEAC) where she worked to propagate a particularly difficult plant to grow- a native orchid species- using tissue culture techniques. With that experience in tissue culture, hydroponics and controlled environments, she took a position at the Kennedy Space Center working for NASA where she developed technologies and protocols to grow crops for space missions. “I started with strawberry TC [tissue culture], because of the shelf life & weight compared with potted plants, plus you can’t really ‘water’ plants in space- at least not in the traditional way,” says Dr. Jones. “Strawberries pack a lot of antioxidants. Foods high in antioxidants, I argued, could boost internal protection of astronauts from high levels of cosmic radiation that they are exposed to in space.” That research led to a focus on cancer biology and a Ph.D. in molecular & cellular biology and plant sciences, culminating in her introduction to the cannabis industry and now with C4 Labs in Arizona.

Working with tissue culture since 2003, Dr. Jones is familiar with this technology that is fairly new to cannabis, but has been around for decades now and is widely used in the horticulture industry today. For example, Phytelligence is an agricultural biotechnology company using genetic analysis and tissue culture to help food crop growers increase speed to harvest, screen for diseases, store genetic material and secure intellectual property. “Big horticulture does this very well,” says Dr. Jones. “There are many companies generating millions of clones per year.” The Department of Plant Sciences Pomology Program at the Davis campus of the University of California uses tissue culture with the Foundation Plant Services (FPS) to eliminate viruses and pathogens, while breeding unique cultivars of strawberries.

A large tissue culture facility run in the Sacramento area that produces millions of nut and fruit trees clones a year.

First, let’s define some terms. Tissue culture is a propagation tool where the cultivator would grow tissue or cells outside of the plant itself, commonly referred to as micropropagation. “Micropropagation produces new plants via the cloning of plant tissue samples on a very small scale, and I mean very small,” says Dr. Jones. “While the tissue used in micropropagation is small, the scale of production can be huge.” Micropropagation allows a cultivator to grow a clone from just a leaf, bud, root segment or even just a few cells collected from a mother plant, according to Dr. Jones.

The science behind growing plants from just a few cells relies on a characteristic of plant cells called totipotency. “Totipotency refers to a cell’s ability to divide and differentiate, eventually regenerating a whole new organism,” says Dr. Jones. “Plant cells are unique in that fully differentiated, specialized cells can be induced to dedifferentiate, reverting back to a ‘stem cell’-like state, capable of developing into any cell type.”

Cannabis growers already utilize the properties of totipotency in cloning, according to Dr. Jones. “When cloning from a mother plant, stem cuttings are taken from the mother, dipped into rooting hormone and two to five days later healthy roots show up,” says Dr. Jones. “That stem tissue dedifferentiates and specializes into new root cells. In this case, we humans helped the process of totipotency and dedifferentiation along using a rooting hormone to ‘steer’ the type of growth needed.” Dr. Jones is helping cannabis growers use tissue culture as a new way to generate clones, instead of or in addition to using mother plants.

With cannabis micropropagation, the same principles still apply, just on a much smaller scale and with greater precision. “In this case, very small tissue samples (called explants) are sterilized and placed into specialized media vessels containing food, nutrients, and hormones,” says Dr. Jones. “Just like with cuttings, the hormones in the TC media induce specific types of growth over time, helping to steer explant growth to form all the organs necessary to regenerate a whole new plant.”

Having existed for decades, but still so new to cannabis, tissue culture is an effective propagation tool for advanced breeders or growers looking to scale up. In the next part of this series, we will discuss some of issues with mother plants and advantages of tissue culture to consider. In Part 2 we will delve into topics like sterility, genetic reboot, viral infection and pathogen protection.

Understanding Dissolved Oxygen in Cannabis Cultivation

By Aaron G. Biros
2 Comments

Oxygen plays an integral role in plant photosynthesis, respiration and transpiration. Photosynthesis requires water from the roots making its way up the plant via capillary action, which is where oxygen’s job comes in. For both water and nutrient uptake, oxygen levels at the root tips and hairs is a controlling input. A plant converts sugar from photosynthesis to ATP in the respiration process, where oxygen is delivered from the root system to the leaf and plays a direct role in the process.

Charlie Hayes has a degree in biochemistry and spent the past 17 years researching and designing water treatment processes to improve plant health. Hayes is a biochemist and owner of Advanced Treatment Technologies, a water treatment solutions provider. In a presentation at the CannaGrow conference, Hayes discussed the various benefits of dissolved oxygen throughout the cultivation process. We sat down with Hayes to learn about the science behind improving cannabis plant production via dissolved oxygen.

In transpiration, water evaporates from a plant’s leaves via the stomata and creates a ‘transpirational pull,’ drawing water, oxygen and nutrients from the soil or other growing medium. That process helps cool the plant down, changes osmotic pressure in cells and enables a flow of water and nutrients up from the root system, according to Hayes.

Charlie Hayes, biochemist and owner of Advanced Treatment Technologies

Roots in an oxygen-rich environment can absorb nutrients more effectively. “The metabolic energy required for nutrient uptake come from root respiration using oxygen,” says Hayes. “Using high levels of oxygen can ensure more root mass, more fine root hairs and healthy root tips.” A majority of water in the plant is taken up by the fine root hairs and requires a lot of energy, and thus oxygen, to produce new cells.

So what happens if you don’t have enough oxygen in your root system? Hayes says that can reduce water and nutrient uptake, reduce root and overall plant growth, induce wilting (even outside of heat stress) in heat stress and reduce the overall photosynthesis and glucose transfer capabilities of the plant. Lower levels of dissolved oxygen also significantly reduce transpiration in the plant. Another effect that oxygen-deprived root systems can have is the production of ethylene, which can cause cells to collapse and make them more susceptible to disease. He says if you are having issues with unhealthy root systems, increasing the oxygen levels around the root system can improve root health. “Oxygen starved root tips can lead to a calcium shortage in the shoot,” says Hayes. “That calcium shortage is a common issue with a lack of oxygen, but in an oxygen-deprived environment, anaerobic organisms can attack the root system, which could present bigger problems.”

So how much dissolved oxygen do you need in the root system and how do you achieve that desired level? Hayes says the first step is getting a dissolved oxygen meter and probe to measure your baseline. The typical dissolved oxygen probe can detect from 20 up to 50 ppm and up to 500% saturation. That is a critical first step and tool in understanding dissolved oxygen in the root system. Another important tool to have is an oxidation-reduction potential meter (ORP meter), which indicates the level of residual oxidizer left in the water.

Their treatment system includes check valves that are OSHA and fire code-compliant.

Citing research and experience from his previous work, he says that health and production improvements in cannabis plateau at the 40-45 parts-per-million (ppm) of dissolved oxygen in the root zone. But to achieve those levels, growers need to start with an even higher level of dissolved oxygen in a treatment system to deliver that 40-45 ppm to the roots. “Let’s say for example with 3 ppm of oxygen in the root tissue and 6ppm of oxygen in the surrounding soil or growing medium, higher concentrations outside of the tissue would help drive absorption for the root system membrane,” says Hayes.

Reaching that 40-45 ppm range can be difficult however and there are a couple methods of delivering dissolved oxygen. The most typical method is aeration of water using bubbling or injecting air into the water. This method has some unexpected ramifications though. Oxygen is only one of many gasses in air and those other gasses can be much more soluble in water. Paying attention to Henry’s Law is important here. Henry’s Law essentially means that the solubility of gasses is controlled by temperature, pressure and concentration. For example, Hayes says carbon dioxide is up to twenty times more soluble than oxygen. That means the longer you aerate water, the higher concentration of carbon dioxide and lower concentration of oxygen over time.

Another popular method of oxidizing water is chemically. Some growers might use hydrogen peroxide to add dissolved oxygen to a water-based solution, but that can create a certain level of phytotoxicity that could be bad for root health.

Using ozone, Hayes says, is by far the most effective method of getting dissolved oxygen in water, (because it is 12 ½ times more soluble than oxygen). But just using an ozone generator will not effectively deliver dissolved oxygen at the target levels to the root system. In order to use ozone properly, you need a treatment system that can handle a high enough concentration of ozone, mix it properly and hold it in the solution, says Hayes. “Ozone is an inherently unstable molecule, with a half-life of 15 minutes and even down to 3-5 minutes, which is when it converts to dissolved oxygen,” says Hayes. Using a patented control vessel, Hayes can use a counter-current, counter-rotational liquid vortex to mix the solution under pressure after leaving a vacuum. Their system can produce two necessary tools for growers: highly ozonized water, which can be sent through the irrigation system to effectively destroy microorganisms and resident biofilms, and water with high levels of dissolved oxygen for use in the root system.

An Introduction to Cannabis Genetics, Part III

By Dr. CJ Schwartz
No Comments

Polyploidy in Cannabis

Polyploidy is defined as containing more than two homologous sets of chromosomes. Most species are diploid (all animals) and chromosomal duplications are usually lethal, even partial duplications have devastating effects (Down’s syndrome). Plants are unique as in being able to somewhat “tolerate” chromosomal duplications. We often observe hybrid vigor in the F1, while the progeny of the F1 (F2) will produce mostly sickly or dead plants, as the chromosomes are unable to cleanly segregate.

polyploidy
Polyploids are generated when chromosomes fail to separate (non-disjunction) during pollen and egg generation. The chromosomes normally exist in pairs, thus having only one, or three, interferes in pairing in subsequent generations.

Chromosomal duplications, either one chromosome or the whole genome, happen frequently in nature, and actually serves as a mechanism for evolution. However the vast majority (>99.99%) results in lethality.

Thus there is polyploidy in Cannabis, and a few examples are supported by scientific evidence. The initial hybrid may show superior phenotypes and can be propagated through cloning, but there may be little potential for successful breeding with these plants.

Epigenetics and Phenotypic Consistency in Clones

One mechanism of turning off genes is by the DNA becoming physically inaccessible due to a structure resembling a ball. In addition, making molecules similar to DNA (RNA) that prevents expression of a gene can turn off certain genes. Both mechanisms are generally termed epigenetics.

These mice are all genetically identical yet they manifest different phenotypes for fur color.
These mice are genetically identical, yet their coat color phenotype is variable. Something above or beyond (epi) the gene (genetic) is controlling the phenotype.

Epigenetic regulation is often dependent on concentrations of certain proteins. Through the repeated process of cloning, it is possible that some of these proteins may be diluted, due to so many total cell divisions and epigenetic control of gene expression can be attenuated and results in phenotypic variability.

Sexual reproduction, and possibly tissue culture propagation, may re-establish complete epigenetic gene regulation, however the science is lacking. Epigenetic gene regulation is one of the hottest scientific topics and is being heavily investigated in many species including humans.

Hermaphrodites and Sex Determination

Cannabis is an extremely interesting genus (species?) for researching sex determination. Plants are usually either monoecious (both male and female organs on a single plant), or dioecious, separate sexes. Sex determination has evolved many times in many species. Comparing the mechanisms of sex determination in different organisms provides valuable opportunities to contrast and compare, thereby developing techniques to control sex determinations.

The sex organs on a Cannabis plant identified.
The sex organs on a Cannabis plant identified.

Cannabis is considered a male if it contains a Y-chromosome. Females have two X chromosomes. Even though female Cannabis plants do not have the “male” chromosome, they are capable of producing viable pollen (hermaphrodite) that is the source of feminized seeds. Therefore, the genes required to make pollen are NOT on the Y-chromosome, but are located throughout the remainder of the Cannabis genome. However, DNA based tests are available to identify Male Associated Sequence (MAS) that can be used as a test for the Y-chromosome in seedlings/plants.

Natural hermaphrodites may have resulted from Polyploidization (XXXY), or spontaneous hermaphrodites could be a result of epigenetic effects, which may be sensitive to the environment and specific chemical treatments.

Feminized seeds will still have genes segregating, thus they are not genetically identical. This shouldn’t lead to a necessary decrease in health, but could. A clone does not have this problem.

The other issue is that “inbreeding depression” is a common biological phenomenon, where if you are too inbred, it is bad…like humans. Feminized seeds are truly inbred. Each generation will decrease Heterozygosity, but some seeds (lines) may be unhealthy and thus are not ideal plants for a grower.

GMO– The Future of Cannabis?

Is there GMO (genetically modified organism) Cannabis? Probably, but it is likely in a lab somewhere…deep underground! Companies will make GMO Cannabis. One huge advantage to doing so is that you create patentable material…it is unique and it has been created.

The definition of a GMO is…well, undefined. New techniques exist whereby a single nucleotide can be changed out of 820 million and no “foreign” DNA remains in the plant. If this nucleotide change already exists in the Cannabis gene pool, it could happen naturally and may not be considered a GMO. This debate will continue for years or decades.

Proponents of GMO plants cite the substantial increase in productivity and yield, which is supported by science. What remains to be determined, and is being studied, are the long-term effects on the environment, ecosystem and individual species, in both plants and animals. Science-based opponent arguments follow the logic that each species has evolved within itself a homeostasis and messing with its genes can cause drastic changes in how this GMO acts in the environment/ecosystem (Frankenstein effect). Similarly, introducing an altered organism into a balanced ecosystem can lead to drastic changes in the dynamics of the species occupying those ecological niches. As in most things in life, it is not black and white; what is required is a solid understanding of the risks of each GMO, and for science to prove or disprove the benefits and risks of GMO crops.

Cannabis, Soil Science and Sustainability Part II: The ‘Roots’ of Sustainable Cultivation

By Drew Plebani
No Comments

The modern chemical agricultural approach is based on the assumption that chemical science has discovered all facets of plant nutritional requirements. It is clear that the traditional NPK approach to plant/soil systems has its limitations, both from an ecological perspective and in terms of its ability to create nutrient-dense food.

Soil and plant systems have existed together for millions of years and have evolved the capacity to coexist in a way that is mutually beneficial. Plants have been fed and evolved with these biological and environmental stimuli over millennia.

Looking to the geologic record for evidence, we can see that it shows that invertebrates, fungi and early vascular plants appeared on land roughly 400 million years ago, the first seed bearing plants about 360 million years ago and the first flowering plants 130 million years ago. What does this mean? The soil food web has been in existence for millions of years and significant evidence exists that plants and soil biology have co-evolved together for millennia.

geologictimescale
The Geologic Time Scale

Between mineral rich soils and the soil food web, this natural system has been able to create and provide significant plant available nutrients, certainly enough to facilitate the successful life cycle of many species. Clearly from an evolutionary context this system has been able to facilitate maximum genetic expression and the ongoing evolution of biologic species.

In the not-too-distant past, agricultural fertilization practices were based on the existence of a diversity of plant and animal byproducts, animal manures, green manures, etc. These were reintroduced to the system and combined with the appropriate biologic populations, resulting in the decomposition of these organic material inputs and their conversion into plant-available nutrients.

An overview of traditional farming practices provides substantial evidence that farming has been occurring for at least 10,000 years. Why, with such a long history of symbiotic interactions between biologic species, are we now witnessing the mass deterioration of arable land, and agricultural commodities containing lower nutritional value?

Mycelium, the vegetative part of a fungus bacteria colony, seen breaking through rock.
Together, indigenous mycelium and plant roots seen turning rock into soil

An interesting common question among the conventional farming community, when the topic of organics or sustainability comes up, is “how are you going to feed the world?” Well that goal certainly will not be well served by the development of shelf stable, but low nutrient-dense foods. A greater volume of low nutrient-value foods certainly does not seem like a winning approach. Supporting agricultural systems that encourage the development of sustainable systems via locally produced, nutrient-dense food is a good start.

And the same holds true for cannabis. In fact, the parallels between the production of high quality nutrient dense foods and high quality cannabis products are quite significant.

Nutrient density in crops results from balanced, mineral rich soils, and a diversity of organic materials and biologic life, these elements provide the framework to facilitate the creation of a highly functional, biologic nutrient cycling system. A highly functional soil system results in more nutrient-dense crops, which contain measurably larger quantities of different phytonutrients, vitamins, minerals, flavonoids, and terpenes as compared to a system operating at a lower level of biologic efficiency.

commercialcultivator
Nutrient-dense cannabis flowers

Benefits that have been observed from nutrient-dense crops are: more pest and disease resistance in the vegetative and fruiting stages, greater yield, more complex and intense flavors and a longer shelf life.

Ultimately advancement in any cultivation system means finding and defining limiting factors in the given system. The objective should be ensuring the maximum biologic vitality of the components of said system and its outputs. Practically speaking, in order to enable the full genetic potential of biologic species, this means identifying and working toward the removal of limiting factors. Minimizing or entirely alleviating the factors that limit maximum plant growth will undoubtedly net positive gains and must be an integral component to any sustainable cultivation strategy.

commcultivator3
Cannabis growing in a polyculture

The Earth has provided us with a highly successful, multi-million-year-old biologic system, capable of providing abundant plant available nutrients on demand, a dynamic which must be integral to appropriate and intelligent systems design.

In the pursuit of sustainability, perhaps it is time to return to our roots and begin to pursue dynamics that are mutually beneficial to all forms of biologic life.

In the next article, we will take a step back from viewing sustainability through the lens of soil and plant specific cultivation methodologies, and focus on the broader context of sustainability in cultivation systems. We will look at sustainability from the context of operational efficiency, and provide a case study from a 400-light commercial indoor cannabis operation. The case study will provide evidence that, in order to achieve higher levels of sustainability, both cultivation strategies and operational efficiency must be factored into the equation. As we will see, true sustainability is created through the efficient design, incorporation, use and management of system elements, all of which can, when appropriately designed, work together to create improved efficiency for the system.

Marijuana Matters

Patent Options Available for Breeding Cannabis

By David C. Kotler, Esq.
No Comments

Patent No.: 909554. Date of patent: August 4, 2015. Years from now, historians and academics may look back on this patent number and date as a watershed mark in the evolution of legal cannabis. Feel free to read the 147 pages of the patent documents but, in short, it “leads to many innovations, provides compositions and methods for breeding, production, processing and use of specialty cannabis.” It was the first time that the U.S. Patent Office (USPTO) had issued a patent for a plant containing significant amounts of THC. One USPTO spokesman recently discussed with a journalist that “there are no special statutory requirements or restrictions applied to marijuana plants.” The following is a broad, and I mean really broad, overview of the options available to protect intellectual property within the cannabis species and strain realm.

Generally speaking, to be patent eligible, an invention must be useful, it must be new, it cannot be obvious and it must be described in a manner so that people of skill in the relevant specialty can understand what the invention is, make it and use it without engaging in undue experimentation. In terms of cannabis, essentially the breeder must have created a new and non-obvious strain over what already exists that is useful such as being highly resistant to molds or having a specific concentration of CBD.

Breeders potentially have a number of options available to them, despite the common belief otherwise. In the U.S. there are five types of intellectual property protection that breeders can obtain for new plant varieties or their use of clones:

One may seek protection for seeds and tubers, known as Plant Variety Protection. A tuber is essentially a swelled root that forms a storage organ. The Plant Variety Protection Office provides this protection. To apply for Plant Variety Protection, the applicant submits information to show that the variety is new, distinct, uniform and stable.

For asexually propagated plants except for tubers, a Plant Patent may be sought. These are sought through the USPTO. This is relatively inexpensive compared with a Utility Patent covering the genetics.

Trade secrets are often used to protect inventions that will not be commercially available or cannot be reverse engineered. For example, if a new strain is invented but is only commercially available in its final form, trade secret protection may be the best form. The most important thing to remember is that a company must follow a strict set of requirements to keep the trade secret confidential.

The last patent type protection could be through a Utility Patent. A Utility Patent can be issued for any type of plant showing its utility. These are issued by the USPTO. Seeking and obtaining a Utility Patent is expensive and complex.

In addition to Patent Protection, breeders may seek Contractual Agreements restricting the use of the clones (i.e. a material use agreement). The parameters that a breeder wishes to craft can essentially be crafted into the language of any type of agreement that is drafted to memorialize the relationship and terms between the parties.

A few broad-stroke items to keep in mind with regard to patents particularly relative to the patenting of cannabis strains and the like: First, is the passage of the America Invents Act which among other changes allowed for the U.S. to transition from a First-to-Invent patent system to a system where priority is given to the first inventor to file a patent application. Second, there are the potential bars based on different types of prior use.

Any discussion about the foregoing topic should necessarily include the question: Is it really good for the cannabis industry and its evolution? The dialogue moves out of one steeped in tradition, lure of trips through mountain passages, and potentially patient benefit or in search of higher quality and into connotations of business law and big businesses sweeping in to take over. It is an expensive process. It may be inevitable. In the meantime, protect yourself as best you can and as you see fit.

CannaGrow: Education on the Science of Cultivation

By Aaron G. Biros
No Comments

The CannaGrow Conference & Expo, held in San Diego on May 7th and 8th, educated attendees on the science of cannabis cultivation. The conference brought subject matter experts from around the country to discuss cannabis breeding and genetics, soil science and cultivation facility design.rsz_img_5038

Discussions at the conference delved deep into the science behind growing while providing some expert advice. Drew Plebani, chief executive officer of Commercial Cultivator, Inc., gave a comprehensive review of soil ecology and how understanding soil fertility is crucial to successfully growing consistent cannabis. “Soil fertility is measured by laboratories in terms of soil minerals, plant-available nutrients, percent of organic materials, pH levels and most importantly the balance of the soil’s chemical makeup,” says Plebani. “There is no silver bullet in soil ecology; increasing your soil fertility comes down to understanding the composition of soil with analytical testing.” Plebani went on to add that soil systems for cannabis need to be slightly fungal-dominant in developing an endomycorrhizal system, which is optimal for cannabis plant growth.

Plebani notes that growth and viability are reliant on maximum root mass.
Plebani notes that growth and viability are reliant on maximum root mass.

Tom Lauerman, colloquially known as Farmer Tom and founder of Farmer Tom Organics, kicked off the conference with an introduction to cultivation techniques. Lauerman also delved into his experience working with federal agencies in conducting the first ever health hazard evaluation (HHE) for cannabis with the National Institute for Occupational Safety and Health (NIOSH). Through the HHE program, NIOSH responds to requests for evaluations of workplace health hazards, which are then enforced by the Occupational Safety & Health Administration (OSHA). Lauerman worked with those federal agencies, allowing them to tour his cultivation facilities to perform an HHE for cannabis processing worker safety. “I was honored to introduce those federal agencies to cannabis and I think this is a great step toward normalizing cannabis by getting the federal government involved on the ground level,” says Lauerman. Through the presentation, Lauerman emphasized the importance of working with NIOSH and OSHA to show federal agencies how the cannabis production industry emerged from the black market, branding itself with a sense of legitimacy.

Attendees flocked to Jacques and his team after the presentation to meet them.
Attendees flocked to Jacques and his team after the presentation to meet them.

Adam Jacques, award-winning cultivator and owner of Grower’s Guild Gardens, discussed his success in breeding CBD-dominant strains and producing customized whole-plant extractions for specific patients’ needs. “I find higher percentages of CBD in plants harvested slightly earlier than you would for a high-THC strain,” says Jacques. “Using closed-loop carbon dioxide extraction equipment, we can use multiple strains to homogenize an oil dialed in for each patient’s specific needs.” As a huge proponent of the Entourage Effect, Jacques stressed the importance of full plant extraction using fractionation with carbon dioxide. He also stressed the importance of analytical testing at every step during processing.

Hildenbrand discussing some of the lesser-known terpenoids yet to be studied.
Hildenbrand discussing some of the lesser-known terpenoids yet to be studied.

Zacariah Hildenbrand, Ph.D., chief scientific officer at C4 Laboratories, provided the 30,000-foot view of the science behind compounds in cannabis, their interactions and his research. With the help of their DEA license, he started the C4 Cannabinomics Collaborative, where they are working with Dr. Kevin Schug at the University of Texas-Arlington to screen various cannabis strains to discover new molecules and characterize their structure. “Secondarily, we are using gene expression profiles and analysis to understand the human physiological response and the mechanism through which they elicit that response,” says Hildenbrand. “As this research evolves, we should look to epigenetics and understanding how genes are expressed.” His collaborative effort uses Shimadzu’s Vacuum Ultraviolet Spectroscopy (VUV), and they use the only VUV instrument in an academic laboratory in the United States. “Pharmaceuticals are supposed to be a targeted therapy and that is where we need to go with cannabis,” says Hildenbrand. Him and his team at C4 Laboratories want to work on the discovery of new terpenes and analyze their potential benefits, which could be significant research for cannabis medicine.

Other important topics at the conference included facility design and optimization regarding efficient technologies such as LED lighting and integrated pest management.