Tag Archives: pathogen

Steven Burton

Top 4 Food Safety Hazards for the Cannabis Industry

By Steven Burton
12 Comments
Steven Burton

As many US States and Canadian provinces approach legalization of cannabis, the question of regulatory oversight has become a pressing issue. While public awareness is mainly focused on issues like age restrictions and impaired driving, there is another practical question to consider: should cannabis be treated as a drug or a food product when it comes to safety? In the US, FDA governs both food and drugs, but in Canada, drugs are regulated by Health Canada while food products are regulated under the CFIA.There are many food safety hazards associated with cannabis production and distribution that could put the public at risk, but are not yet adequately controlled

Of course, there are common issues like dosage and potency that pharmaceutical companies typically worry about as the industry is moving to classifying its products in terms of percentage of chemical composition (THC, CBD, etc. in a strain), much as we categorize alcohol products by the percentage of alcohol. However, with the exception of topical creams and ointments, many cannabis products are actually food products. Even the herb itself can be brewed into teas, added to baked goods or made into cannabis-infused butters, oils, capsules and tinctures.

FDAlogoAs more people gain access to and ingest cannabis products, it’s only a matter of time before food safety becomes a primary concern for producers and regulators. So when it comes to food safety, what do growers, manufacturers and distributors need to consider? The fact is, it’s not that different from other food products. There are many food safety hazards associated with cannabis production and distribution that could put the public at risk, but are not yet adequately controlled. Continue reading below for the top four safety hazards for the cannabis industry and learn how to receive free HACCP plans to help control these hazards.

Aflatoxins on Cannabis Bud

Just like any other agricultural product, improper growing conditions, handling and storage can result in mold growth, which produce aflatoxins that can cause liver cancer and other serious health problems. During storage, the danger is humidity; humidity must be monitored in storage rooms twice a day and the meter must be calibrated every month. During transportation, it is important to monitor and record temperatures in trucks. Trucks should also be cleaned weekly or as required. Products received at a cannabis facilities should be tested upon receiving and contaminated products must always be rejected, segregated and disposed of safely.

Petri dish containing the fungus Aspergillus flavus. It produces carcinogenic aflatoxins, which can contaminate certain foods and cause aspergillosis, an invasive fungal disease.
Photo courtesy of USDA ARS & Peggy Greb.

Chemical Residues on Cannabis Plants

Chemical residues can be introduced at several points during the production and storage process. During growing, every facility should follow instructions for applying fertilizers and pesticides to crops. This includes waiting for a sufficient amount of time before harvesting. When fertilizer is being applied, signs must be posted. After cannabis products have been harvested, chemical controls must be in place. All chemicals should be labelled and kept in contained chemical storage when not in use to prevent contamination. Only food-grade chemicals (e.g. cleaners, sanitizers) should be used during curing, drying, trimming and storage.

Without a comprehensive food safety program, problems will inevitably arise.There is also a risk of excessive concentration of chemicals in the washing tank. As such, chemical concentrations must be monitored for. In general, water (obviously essential for the growing process) also carries risks of pathogenic bacteria like staphylococcus aureus or salmonella. For this reason, city water (which is closely controlled in most municipalities) should be used with an annual report and review. Facilities that use well water must test frequently and water samples must be tested every three months regardless.

Pathogenic Contamination from Pest Infestations

Insects, rodents and other pests spread disease. In order to prevent infestations, a pest control program must be implemented, with traps checked monthly by a qualified contractor and verified by a designated employee. It is also necessary to have a building procedure (particularly during drying), which includes a monthly inspection, with no holes or gaps allowed. No product should leave the facility uncovered to prevent fecal matter and other hazards from coming into contact with the product. Contamination can also occur during storage on pallets, so pallets must be inspected for punctures in packaging material.

Furthermore, even the best controlled facility can fall victim to the shortcomings of their suppliers. Procedures must be in place to ensure that suppliers are complying with pest and building control procedures, among others. Certifications should be acquired and tracked upon renewal.

Pathogenic Contamination Due to Improper Employee Handling

Employee training is key for any food facility. When employees are handling products, the risk of cross-contamination is highest. Facilities must have GMP and personnel hygiene policies in place, with training conducted upon hiring and refreshed monthly. Employees must be encouraged to stay home when sick and instructed to wear proper attire (gloves, hair nets, etc.), while glass, jewelry and outside food must not be allowed inside the facility. Tools used during harvesting and other stages may also carry microorganisms if standard cleaning procedures are not in place and implemented correctly by employees.

As the cannabis industry grows, and regulatory bodies like the FDA and CFIA look to protect public safety, we expect that more attention will be paid to other food safety issues like packaging safety (of inks and labels), allergen control and others. In the production of extracts, for example, non-food safe solvents could be used or extracts can be mixed with ingredients that have expiration dates, like coconut oil. There is one area in which the cannabis industry may lead the way, however. More and more often, risks of food terrorism, fraud and intentional adulteration are gripping the food industry as the global food chain becomes increasingly complex. It’s safe to say that security at cannabis facilities is probably unparalleled.

All of this shows that cannabis products, especially edibles (and that includes capsules and tinctures), should be treated the same as other food products simply because they have the same kinds of hazards. Without a comprehensive food safety program (that includes a plan, procedures, training, monitoring and verification), problems will inevitably arise.

Microbiology 101 Part Two

By Kathy Knutson, Ph.D.
No Comments

Microbiology 101 Part One introduced the reader to the science of microbiology and sources of microbes. In Part Two, we discuss the control of microorganisms in your products.

Part 2

The cannabis industry is probably more informed about patients and consumers of their products than the general food industry. In addition to routine illness and stress in the population, cannabis consumers are fighting cancer, HIV/AIDS and other immune disorders. Consumers who are already ill are immunocompromised. Transplant recipients purposely have their immune system suppressed in the process of a successful transplant. These consumers have pre-existing conditions where the immune system is weakened. If the immunocompromised consumer is exposed to viral or bacterial pathogens through cannabis products, the consumer is more likely to suffer from a viral infection or foodborne illness as a secondary illness to the primary illness. In the case of consumers with weakened immune systems, it could literally kill them.Bacteria, yeast, and mold are present in all environments.

The cannabis industry shoulders great responsibility in both the medical and adult use markets. In addition to avoiding chemical hazards and determining the potency of the product, the cannabis industry must manufacture products safe for consumption. There are three ways to control pathogens and ensure a safe product: prevent them from entering, kill them and control their growth.

Prevent microorganisms from getting in

Think about everything that is outdoors that will physically come in a door to your facility. Control the quality of ingredients, packaging, equipment lubricants, cleaning agents and sanitizers. Monitor employee hygiene. Next, you control everything within your walls: employees, materials, supplies, equipment and the environment. You control receiving, employee entrance, storage, manufacturing, packaging and distribution. At every step in the process, your job is to prevent the transfer of pathogens into the product from these sources.

Kill microorganisms

Colorized low-temperature electron micrograph of a cluster of E. coli bacteria.
Image courtesy of USDA ARS & Eric Erbe

The combination of raw materials to manufacture your product is likely to include naturally occurring pathogens. Traditional heat methods like roasting and baking will kill most pathogens. Remember, sterility is not the goal. The concern is that a manufacturer uses heat to achieve organoleptic qualities like color and texture, but the combination of time and temperature may not achieve safety. It is only with a validated process that safety is confirmed. If we model safety after what is required of food manufacturers by the Food and Drug Administration, validation of processes that control pathogens is required. In addition to traditional heat methods, non-thermal methods for control of pathogens includes irradiation and high pressure processing and are appropriate for highly priced goods, e.g. juice. Killing is achieved in the manufacturing environment and on processing equipment surfaces after cleaning and by sanitizing.

If you have done everything reasonable to stop microorganisms from getting in the product and you have a validated step to kill pathogens, you may still have spoilage microorganisms in the product. It is important that all pathogens have been eliminated. Examples of pathogens include Salmonella, pathogenic Escherichia coli, also called Shiga toxin-producing E. coli (STEC) and Listeria monocytogenes. These three common pathogens are easily destroyed by proper heat methods. Despite steps taken to kill pathogens, it is theoretically possible a pathogen is reintroduced after the kill step and before packaging is sealed at very low numbers in the product. Doctors do not know how many cells are required for a consumer to get ill, and the immunocompromised consumer is more susceptible to illness. Lab methods for the three pathogens mentioned are designed to detect very low cell numbers. Packaging and control of growth factors will stop pathogens from growing in the product, if present.

Control the growth of microorganisms

These growth factors will control the growth of pathogens, and you can use the factors to control spoilage microbes as well. To grow, microbes need the same things we do: a comfortable temperature, water, nutrients (food), oxygen, and a comfortable level of acid. In the lab, we want to find the pathogen, so we optimize these factors for growth. When you control growth in your product, one hurdle may be enough to stop growth; sometimes multiple hurdles are needed in combination. Bacteria, yeast, and mold are present in all environments. They are at the bottom of the ocean under pressure. They are in hot springs at the temperature of boiling water. The diversity is immense. Luckily, we can focus on the growth factors for human pathogens, like Salmonella, pathogenic E. coli, and Listeria monocytogenes.

The petri dishes show sterilization effects of negative air ionization on a chamber aerosolized with Salmonella enteritidis. The left sample is untreated; the right, treated. Photo courtesy of USDA ARS & Ken Hammond

Temperature. Human pathogens prefer to grow at the temperature of the human body. In manufacture, keep the time a product is in the range of 40oF to 140oF as short as possible. You control pathogens when your product is at very hot or very cold temperatures. Once the product cools after a kill step in manufacturing, it is critical to not reintroduce a pathogen from the environment or personnel. Clean equipment and packaging play key roles in preventing re-contamination of the product.

Water. At high temperatures as in baking or roasting, there is killing, but there is also the removal of water. In the drying process that is not at high temperature, water is removed to stop the growth of mold. This one hurdle is all that is needed. Even before mold is controlled, bacterial and yeast growth will stop. Many cannabis candies are safe, because water is not available for pathogen growth. Packaging is key to keep moisture out of the product.

Nutrients. In general, nutrients are going to be available for pathogen growth and cannot be controlled. In most products nutrients cannot be removed, however, recipes can be adjusted. Recipes for processed food add preservatives to control growth. In cannabis as in many plants, there may be natural compounds which act as preservatives.

Oxygen. With the great diversity of bacteria, there are bacteria that require the same oxygen we breathe, and mold only grows in oxygen. There are bacteria that only grow in the absence of oxygen, e.g. the bacteria responsible for botulism. And then there are the bacteria and yeast in between, growing with or without oxygen. Unfortunately, most human pathogens will grow with or without oxygen, but slowly without oxygen. The latter describes the growth of Salmonella, E. coli, and Listeria. While a package seals out air, the growth is very slow. Once a package is opened and the product is exposed to air, growth accelerates.

Acid. Fermented or acidified products have a higher level of acid than non-acid products; the acid acts as a natural preservative. The more acid, the more growth is inhibited. Generally, acid is a hurdle to growth, however and because of diversity, some bacteria prefer acid, like probiotics which are non-pathogenic. Some pathogens, like E. coli, have been found to grow in low acid foods, e.g. juice, even though the preference is for non-acidic environments.

Each facility is unique to its materials, people, equipment and product. A safe product is made by following Good Agricultural Practices for the cannabis, by following Good Manufacturing Practices and by suppressing pathogens by preventing them coming in, killing them and controlling their growth factors. Future articles will cover Hazard Analysis and Critical Control Points (HACCP) and food safety in more detail.

Microbiology 101 Part One

By Kathy Knutson, Ph.D.
No Comments

I have been studying microorganisms for over 35 years, and the elusive critters still fascinate me! Here in Microbiology 101, I write about the foundation of knowledge on which all microbiologists build. You may have a general interest in microbiology or have concerns in your operation. By understanding microbiology, you understand the diversity of microorganisms, their source, control of microorganisms and their importance.

Part 1

The term microbiology covers every living being we cannot see with the naked eye. The smallest microbe is a virus. Next in size are the bacteria, then yeast and mold cells, and the largest microbes are the protozoans. The tiny structure of a virus may be important in the plant pathology of cannabis, but will not grow in concentrates or infused products. A virus is not living, until it storms the gate of a living cell and overtakes the functions within the cell. Viruses are the number one cause of foodborne illness, with the number one virus called Norovirus. Think stomach flu. Think illness on cruise ships. Viruses are a food service problem and can be prevented by requiring employees to report sickness, have good personal hygiene including good hand washing, and, as appropriate, wear gloves. Following Good Manufacturing Practices (GMPs) is critical in preventing the transfer of viruses to a product where the consumer can be infected.

The petri dishes show sterilization effects of negative air ionization on a chamber aerosolized with Salmonella enteritidis. The left sample is untreated; the right, treated. Photo courtesy of USDA ARS & Ken Hammond

The largest microbial cell is the protozoan. They are of concern in natural water sources, but like viruses, will not grow in cannabis products. Control water quality through GMPs, and you control protozoans. Viruses and protozoans will not be further discussed here. Bacteria, yeast and mold are the focus of further discussion. As a food microbiologist, my typical application of this information is in the manufacturing of food. Because Microbiology 101 is a general article on microbiology, you can apply the information to growing, harvesting, drying, manufacture of infused products and dispensing.

It is not possible to have sterile products. Even the canning process of high temperature for an extended time allows the survival of resistant bacterial spores. Astronauts take dehydrated food into space, and soldiers receive MREs; both still contain microbes. Sterility is never the goal. So, what is normal? Even with the highest standards, it is normal to have microbes in your products. Your goal is to eliminate illness-causing microorganisms, i.e. pathogens. Along the way, you will decrease spoilage microbes too, making a product with higher quality.

Petri dish containing the fungus Aspergillus flavus. It produces carcinogenic aflatoxins, which can contaminate foods and cause an invasive fungal disease.
Photo courtesy of USDA ARS & Peggy Greb.

Yeast and mold were discussed on CIJ in a previous article, Total Yeast & Mold Count: What Cultivators & Business Owners Need to Know. Fuzzy mold seen on the top of food left in the refrigerator too long is a quality issue, not a safety issue. Mold growth is a problem on damaged cannabis plants or cuttings and may produce mycotoxin, a toxic chemical hazard. Following Good Agricultural Practices (GAPs) will control mold growth. Once the plant is properly dried, mold will not grow and produce toxin. Proper growing, handling and drying prevents mycotoxins. Like mold, growth of yeast is a quality issue, not a safety issue. As yeast grow, they produce acid, alcohol and carbon dioxide gas. While these fermentation products are unwanted, they are not injurious. I am aware that some states require cannabis-infused products to be alcohol-free, but that is not a safety issue discussed here.

What are the sources of microorganisms?

People. Employees who harvest cannabis may transfer microorganisms to the plant. Later, employees may be the source of microbes at the steps of trimming, drying, transfer or portioning, extract processing, infused product manufacture and packaging.

Ingredients, Supplies and Materials. Anything you purchase may be a source of microorganisms. Procure quality merchandise. Remember the saying, “you get what you pay for.”

Environment. Starting with the outdoors, microbes come from wind, soil, pests, bird droppings and water. When plants are harvested outdoors or indoors, microbes come from the tools and bins. Maintain clean growing and harvesting tools in good working condition to minimize contamination with microbes. For any processing, microbes come from air currents, use of water, and all surfaces in the processing environment from dripping overhead pipes to floor drains and everything in between.

In Part 2 I will continue to discuss the diversity of microorganisms, and future articles will cover Hazard Analysis and Critical Control Points (HACCP) and food safety in more detail. What concerns do you have at each step of operations? Are you confident in your employees and their handling of the product? As each state works to ensure public health, cannabis-infused products will receive the same, if not more, scrutiny as non-cannabis food and beverages. With an understanding and control of pathogens, you can focus on providing your customers with your highest quality product.

Applications for Tissue Culture in Cannabis Growing: Part 1

By Aaron G. Biros
2 Comments

Dr. Hope Jones, chief scientific officer of C4 Laboratories, believes there are a number of opportunities for cannabis growers to scale their cultivation up with micropropagation. In her presentation at the CannaGrow conference recently, Dr. Jones discussed the applications and advantages of tissue culture techniques in cannabis growing.

Dr. Hope Jones, chief scientific officer at C4 Labs

Dr. Jones’ work in large-scale plant production led her to the University of Arizona Controlled Environment Agriculture Center (CEAC) where she worked to propagate a particularly difficult plant to grow- a native orchid species- using tissue culture techniques. With that experience in tissue culture, hydroponics and controlled environments, she took a position at the Kennedy Space Center working for NASA where she developed technologies and protocols to grow crops for space missions. “I started with strawberry TC [tissue culture], because of the shelf life & weight compared with potted plants, plus you can’t really ‘water’ plants in space- at least not in the traditional way,” says Dr. Jones. “Strawberries pack a lot of antioxidants. Foods high in antioxidants, I argued, could boost internal protection of astronauts from high levels of cosmic radiation that they are exposed to in space.” That research led to a focus on cancer biology and a Ph.D. in molecular & cellular biology and plant sciences, culminating in her introduction to the cannabis industry and now with C4 Labs in Arizona.

Working with tissue culture since 2003, Dr. Jones is familiar with this technology that is fairly new to cannabis, but has been around for decades now and is widely used in the horticulture industry today. For example, Phytelligence is an agricultural biotechnology company using genetic analysis and tissue culture to help food crop growers increase speed to harvest, screen for diseases, store genetic material and secure intellectual property. “Big horticulture does this very well,” says Dr. Jones. “There are many companies generating millions of clones per year.” The Department of Plant Sciences Pomology Program at the Davis campus of the University of California uses tissue culture with the Foundation Plant Services (FPS) to eliminate viruses and pathogens, while breeding unique cultivars of strawberries.

A large tissue culture facility run in the Sacramento area that produces millions of nut and fruit trees clones a year.

First, let’s define some terms. Tissue culture is a propagation tool where the cultivator would grow tissue or cells outside of the plant itself, commonly referred to as micropropagation. “Micropropagation produces new plants via the cloning of plant tissue samples on a very small scale, and I mean very small,” says Dr. Jones. “While the tissue used in micropropagation is small, the scale of production can be huge.” Micropropagation allows a cultivator to grow a clone from just a leaf, bud, root segment or even just a few cells collected from a mother plant, according to Dr. Jones.

The science behind growing plants from just a few cells relies on a characteristic of plant cells called totipotency. “Totipotency refers to a cell’s ability to divide and differentiate, eventually regenerating a whole new organism,” says Dr. Jones. “Plant cells are unique in that fully differentiated, specialized cells can be induced to dedifferentiate, reverting back to a ‘stem cell’-like state, capable of developing into any cell type.”

Cannabis growers already utilize the properties of totipotency in cloning, according to Dr. Jones. “When cloning from a mother plant, stem cuttings are taken from the mother, dipped into rooting hormone and two to five days later healthy roots show up,” says Dr. Jones. “That stem tissue dedifferentiates and specializes into new root cells. In this case, we humans helped the process of totipotency and dedifferentiation along using a rooting hormone to ‘steer’ the type of growth needed.” Dr. Jones is helping cannabis growers use tissue culture as a new way to generate clones, instead of or in addition to using mother plants.

With cannabis micropropagation, the same principles still apply, just on a much smaller scale and with greater precision. “In this case, very small tissue samples (called explants) are sterilized and placed into specialized media vessels containing food, nutrients, and hormones,” says Dr. Jones. “Just like with cuttings, the hormones in the TC media induce specific types of growth over time, helping to steer explant growth to form all the organs necessary to regenerate a whole new plant.”

Having existed for decades, but still so new to cannabis, tissue culture is an effective propagation tool for advanced breeders or growers looking to scale up. In the next part of this series, we will discuss some of issues with mother plants and advantages of tissue culture to consider. In Part 2 we will delve into topics like sterility, genetic reboot, viral infection and pathogen protection.

amandarigdon

Amanda Rigdon to Offer Guidance on Method Validation at Cannabis Labs Conference

By Aaron G. Biros
No Comments
amandarigdon

With multiple states now requiring third-party certification as part of licensing cannabis laboratories, there is a large role for laboratory accreditation in the cannabis industry. Using method validation can prove that your data is reproducible and that you have robust methods for sample preparation and calibration. All of these tools are instrumental in getting a laboratory accredited.

Amanda Rigdon, associate marketing manager for GC columns at Restek, Inc.
Amanda Rigdon, associate marketing manager for GC columns at Restek

Amanda Rigdon, associate marketing manager for gas chromatography columns at Restek, Inc., will deliver a presentation, Opportunities and Challenges for Method Validation in the Evolving Cannabis Industry, at the first annual Cannabis Labs Conference taking place this March 9th in Atlanta, Georgia. The Cannabis Labs Conference will be co-located with the third annual Food Labs Conference and the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy (Pittcon) at the Georgia World Congress Center.

scottradcliffe
Scott Radcliffe, technical support scientist at Romer Labs, Inc.

In her presentation, Rigdon will discuss established validation guidelines from a variety of regulatory bodies. “Method validation is absolutely critical to the cannabis industry,” she says. “Accurate test results not only help to protect consumers, but because of the high dollar value of cannabis products, accurate results can also protect producers from false positives, and laboratories in backing up their results.” She will also be sharing actual validation data from a number of cannabis analytical methods.

Scott Radcliffe, technical support scientist at Romer Labs, Inc., will share his validation methods of immunoassays for the detection of pathogens and mycotoxins in cannabis. He will include a discussion of specific rapid pathogen detection methods for Salmonella and E. coli O157 species. This will cover their small-scale validation studies with partner labs in Michigan and Washington for immunoassays.

stevegoldner
Stephen Goldner, Esq, founder of Pinnacle Laboratory and Regulatory Affairs Associates

Stephen Goldner, Esq, founder of Pinnacle Laboratories, will discuss how cannabis labs can apply FDA lab practices with recommendations for short and long term management implementation. Goldner’s presentation will include a discussion of  preparation for FDA involvement in sate regulatory systems.

Beyond validation methods in laboratories, the Cannabis Labs Conference will feature several presentations on ISO/IEC 17025:2005 compliance, the need for standardization, seed-to-sale traceability, FDA best lab practices and cannabis quality. Nic Easley, chief executive officer of Comprehensive Cannabis Consulting (3C), will deliver the keynote presentation on the role of quality assurance in the cannabis industry.

dana and dani luce

Setting a Benchmark in Cannabis Testing: GOAT Labs

By Aaron G. Biros
No Comments
dana and dani luce

GOAT Labs, Inc. is a veteran-owned, i502-certified cannabis testing company with laboratories in Vancouver, Washington and Portland, Oregon. The laboratory launched in 2010 by Dana Luce, the owner, with a personal mission to provide safe and tested cannabis to patients in need.

Dana Luce’s daughter, Dani Luce, CEO of GOAT Labs, has previous experience working in dialysis and watched cancer patients lose their battle to the illness. Many years later, Dani’s oldest son was diagnosed with stage IV Hodgkin lymphoma. Cannabis proved instrumental in alleviating the side effects of chemotherapy. “With a severely compromised immune system, we had to find a place to test all the raw foods given to him, including cannabis,” says Dani Luce.

dana and dani luce
Dana Luce (left), owner of GOAT Labs, and Dani Luce (right), CEO, in the GOAT Labs office.

Dani Luce’s son was in remission nine months after starting chemotherapy in conjunction with cannabis and has now been in remission for five years. “We want to ensure patients are not ingesting something potentially toxic and that proper testing is done, which includes not only potency, but testing for microbials, pathogens, and pesticides.”

GOAT Labs is a member of the Cannabis Coalition for Standards and Ethics (CCSE) along with the American Oil Chemist Society (AOCS), where they participate in the Expert Committee for Cannabis Oil.

With pesticide use on cannabis recently entering the spotlight, there is a growing need for standards in cannabis testing. “We need better regulatory oversight so that all laboratories are standardized, including proficiency testing done by the state,” argues the Luce’s.

billlucesample
Bill Luce, lab technician at GOAT Labs, preparing samples for testing

Roger Brauninger, biosafety program manager of A2LA (American Association for Lab Accreditation), is working on an accreditation process for cannabis laboratories that would be accepted nationally. “We believe that an accreditation process would increase efficacy of lab results, reduce laboratory shopping, and create consistency with results across different laboratories,” says Brauninger.

GOAT Labs, among a number of other laboratories and organizations, is working toward putting cannabis in the lens of mainstream medicine. Not only are they looking to achieve a safe standard for medicine, they are advancing legalization efforts nationwide by setting the benchmark for getting patients access to safe, lab-tested cannabis.