Tag Archives: manufacturing

New Colorado Edibles Regulations Effective October 1st

By Aaron G. Biros
No Comments

Back in April of 2016, the Colorado Legislature passed HB 1436 in an effort to make infused products less appealing to children. On October 1st, 2017, the new law goes into effect, which will prohibit the sale of edibles in the shape of a human, animal or fruit.

The THC universal symbol

Colorado has a history of regulating the market like this, with laws designed to limit the dosing, consistency and appeal of edibles to children. In 2015, regulators placed a 100-milligram cap on THC in infused products, separated into 10-milligram servings. In 2016, regulators began requiring the THC stamp on edibles, a symbol with a clear representation of what the product contains.

Some in the industry are welcoming of these new laws, while others think it might be overregulation. Regardless, manufacturers that have previously produced things like fruit candies or gummy bears now need to update their processes to use non-descript shapes for their products in order to stay compliant.

incredibles logoBob Eschino, founder and president of Incredibles, an infused product manufacturer in Colorado, says these rules are not very effective at preventing kids from obtaining edibles, but it could help. “I believe consumer protection comes from CRP [child-resistant packaging], proper labeling, education and safe storage,” says Eschino. “CDPHE said themselves that stamping or shaping the products is the least effective way to prevent accidental ingestion. It’s a step that will add to consumer protection in a small way, but every little bit helps for now.” There are a number of more effective measures that regulators in Colorado take to prevent edibles from getting in the hands of children, such as child-resistant packaging, prohibiting advertising of cartoon characters, requiring opaque packaging and warning messages on labels.

Products like infused gummy bears will no longer be permitted for retail; Photo: Tamara S., Flickr

According to Peggy Moore, partner of Love’s Oven, an infused product manufacturer, and board president of the Cannabis Business Alliance, the major change companies need to make to stay compliant is ordering new molds. “Depending on the quantity ordered, molds can cost $10,000 or more to fabricate and produce.,” says Moore. “If a company was not using molds previously there is also training that may be required to orient production staff on technique for making molded confections.” She says there are still plenty of options for manufacturers to use like botanical shapes (a cannabis leaf, for example), circles, squares, rectangles and other shapes.

Her company, Love’s Oven, makes caramels, baked goods, crackers and other non-descript shapes already. “At this point I am not aware of any manufacturers who are not already compliant with this rule in advance,” says Moore. “The most common solution is to move to a square, circle or other shape utilizing molds. “ Moore believes it is a producer’s duty to make products that are not enticing to children. “Regardless of the industry (alcohol, cannabis, pharma) I think we should exercise great caution to not produce products that are targeting children,” says Moore. “While I would love to see manufacturers self-regulate in this regard, clearly some guardrail regulations are needed at this point.”

In addition to the rule on using non-descript shapes, HB 1436 prohibits the use of additives in retail cannabis products that are designed to make it addictive, more appealing to children or misleading consumers. The rule does, however, exclude common baking and cooking ingredients. There is also a stipulation that permits local fire departments to perform annual fire inspections at cannabis cultivation facilities.

Implementing a HACCP Plan in Cannabis Processing

By Aaron G. Biros
No Comments

Hazard analysis and critical control points (HACCP) is a robust management system that identifies and addresses any risk to safety throughout production. Originally designed for food safety through the entire supply chain, the risk assessment scheme can ensure extra steps are taken to prevent contamination.

The FDA as well as the Food Safety and Inspection Service currently require HACCP plans in a variety of food markets, including high-risk foods like poultry that are particularly susceptible to pathogenic contamination. As California and other states develop and implement regulations with rigorous safety requirements, cannabis cultivators, extractors and infused product manufacturers can look to HACCP for guidance on bolstering their quality controls. Wikipedia actually has a very helpful summary of the terms referenced and discussed here.

Dr. Markus Roggen, vice president of extraction

The HACCP system consists of six steps, the first of which being a hazard analysis. For Dr. Markus Roggen, vice president of extraction at Outco, a medical cannabis producer in Southern California, one of their hazard analyses takes place at the drying and curing stage. “When we get our flower from harvest, we have to think about the drying and curing process, where mold and bacteria can spoil our harvest,” says Dr. Roggen. “That is the hazard we have to deal with.” So for Dr. Roggen and his team, the hazard they identified is the potential for mold and bacteria growth during the drying and curing process.

The next step in the HACCP system is to identify a critical control point. “Correct drying of the flower will prevent any contamination from mold or bacteria, which is a control point identified,” says Dr. Roggen. “We also have to prevent contamination from the staff; it has to be the correct environment for the process.” That might include things like wearing gloves, protective clothing and hand washing. Once a control point is identified, the third step in the process is to develop a critical limit for those control points.

A critical limit for any given control point could be a maximum or minimum threshold before contamination is possible, reducing the hazard’s risk. “When we establish the critical limit, we know that water activity below 0.65 will prevent any mold growth so that is our critical limit, we have to reach that number,” says Dr. Roggen. The fourth step is monitoring critical control points. For food manufacturers and processors, they are required to identify how they monitor those control points in a written HACCP plan. For Dr. Roggen’s team, this means using a water activity meter. “If we establish the critical control point monitoring, water activity is taken throughout the drying process, as well as before and after the cure,” says Dr. Roggen. “As long as we get to that number quickly and stay below that number, we can control that point and prevent mold and bacteria growth.”

One of the cultivation facilities at Outco

When monitoring is established and if the critical limit is ever exceeded, there needs to be a corrective action, which is the fifth step in a HACCP plan. In Dr. Roggen’s case, that would mean they need a corrective action ready for when water activity goes above 0.65. “If we don’t have the right water activity, we just continue drying, so this example is pretty simple,” says Dr. Roggen. “Normal harvest is 7 days drying, if it is not dry enough, we take longer to prevent mold or bacteria growth.”

The sixth step is establishing procedures to ensure the whole system works. In food safety, this often means requiring process validation. “We have to double check that our procedure and protocols work,” says Dr. Roggen. “Checking for water activity is only a passive way of testing it, so we send our material to an outside testing lab to check for mold or bacteria so that if our protocols don’t work, we can catch those problems in the data and correct them.” They introduced weekly meetings where the extraction and cultivation teams get together to discuss the processes. Dr. Roggen says those meetings have been one of the most effective tools in the entire system.

Dr. Roggen’s team identified worker safety as a potential hazard

The final step in the process is to keep records. This can be as simple as keeping a written HACCP plan on hand, but should include keeping data logs and documenting procedures throughout production. For Dr. Roggen’s team, they log drying times, product weight and lab tests for every batch. Using all of those steps, Dr. Roggen and his team might continue to update their HACCP plans when they encounter a newly identified hazard. While this example is simplistic, the conceptual framework of a HACCP plan can help detect and solve much more complex problems. For another example, Dr. Roggen takes us into his extraction process.

Dr. Roggen’s team, on the extraction side of the business, uses a HACCP plan not just for preventing contamination, but for protecting worker safety as well. “We are always thinking about making the best product, but I have to look out for my team,” says Dr. Roggen. “The health risk to staff in extraction processes is absolutely a hazard.” They use carbon dioxide to extract oil, which carries a good deal of risks as well. “So when we look at our critical control points we need to regularly maintain and clean the extractor and we schedule for that,” says Dr. Roggen.

Gloves, protective clothing, eyewear and respirators are required for workers in the extraction process.

“My team needs respirators, protective clothing, eyewear and gloves to prevent contamination of material, but also to protect the worker from solvents, machine oil and CO2 in the room.” That health risk means they try and stay under legal limits set by the government, which is a critical limit of 3,000 ppm of carbon dioxide in the environment. “We monitor the CO2 levels with our instruments and that is particularly important whenever the extractor is opened.” Other than when it is being opened, Dr. Roggen, notes, the extractor stays locked, which is an important worker safety protocol.

The obvious corrective action for them is to have workers leave the room whenever carbon dioxide levels exceed that critical limit. “We just wait until the levels are back to normal and then continue operation,” says Dr. Roggen. “We updated our ventilation system, but if it still happens they leave the room.” They utilize a sort of double check here- the buddy system. “I took these rules from the chemistry lab; we always have two operators working on the machine on the same time, never anyone working alone.” That buddy check also requires they check each other for protective gear. “Just like in rock climbing or mountain biking, it is important to make sure your partner is safe.” He says they don’t keep records for employees wearing protective gear, but they do have an incident report system. “If any sort of incident takes place, we look at what happened, how could we have prevented it and what we could change,” says Dr. Roggen.

He says they have been utilizing some of these principles for a while; it just wasn’t until recently that they started thinking in terms of the HACCP conceptual framework. While some of those steps in the process seem obvious, and it is very likely that many cannabis processors already utilize them in their standard operating procedures and quality controls, utilizing the HACCP scheme can help provide structure and additional safeguards in production.

Soapbox

Quality Controls and Medical Cannabis: What We Can Learn from Pharma

By Dr. Ginette M. Collazo
1 Comment

When we discuss growing and producing medical cannabis, we must think of it as a medicine. By definition, it is a substance intended to assist you with a medical condition, to help you feel better and not harm you. Drugs produced in the pharmaceutical industry go through extensive quality controls to ensure a level of safety for the consumer or patient. Yet when we talk process and quality controls in medical cannabis production, there is still a lot to learn.

Are we waiting for the wake-up call? Well, ring! Recently Health Canada, the regulatory body overseeing Canada’s medical cannabis market, decided that “It will begin random testing of medical marijuana products to check for the presence of banned pesticides after product recalls affecting nearly 25,000 customers led to reports of illnesses and the possibility of a class action lawsuit.”

Proper quality controls help protect businesses from unforeseen issues like those massive recalls in Canada. These can assure that the product is safe (won’t harm you), has integrity (free of contamination), and that the product is what it says it is (identity). To achieve this important goal, we must have robust systems that will guarantee product quality. Why is this important? Quality controls can ensure a safer and more consistent product, helping build patient and consumer trust and brand loyalty, preventing a public relations nightmare like a recall due to pesticide contamination.

Food processing and sanitation
Product recalls due to manufacturing errors in sanitation cause mistrust among consumers.

The FDA, among other regulatory bodies, has established excellent guidelines to implement these controls. So there is a lot we can learn from the pharmaceutical industry and that FDA guidance regarding quality controls and assurance. After all, we are all interested in the same thing: a safe and effective product.

So, let’s take a look at some of the controls included in the CFR (Code of Federal Regulation), Part 211 , which include Good Manufacturing Practices (GMPs) for finished products, and how you can implement them in the growing business of growing cannabis.

  1. Personnel selection and training: The GMPs establish that “Each person engaged in the manufacture, processing, packing, or holding of a drug product shall have education, training… to enable that person to perform the assigned functions.” These include the creation of specific curricula per position and the establishment of requirements for specialized tasks. We all want to be successful so training, in this case, is what we call the vaccine for mistakes.
  2. Facilities: “Any building or buildings used in the manufacture, processing, packing, or holding of a drug product shall be of suitable size, construction, and location to facilitate cleaning, maintenance, and proper operations.” This requirement includes segregation of spaces to avoid cross-contamination, housekeeping, the cleaning process and detergent types, material storage conditions, humidity levels, temperature, water, and even ventilation requirements to prevent contamination with microorganisms. All with the intention of protecting the product.
  3. Pest control: “There shall be written procedures for the use of suitable rodenticides, insecticides, fungicides, fumigating agents, and cleaning and sanitizing agents. Such written procedures shall be designed to prevent the contamination of equipment, components, drug product containers, closures, packaging, labeling materials, or drug products and shall be followed.” There have been many issues pertaining this requirement. In 2010, Johnson & Johnson received many complaints claiming that the product had a musty, moldy odor. Later, the firm identified the cause of the odor to be a chemical, called 2, 4, 6-Tribromoanisole or TBA; a pesticide used to treat wooden pallets. One of the specific requirements of this section is to avoid the use of wooden pallets, but if you decide to use them, the method of sterilization by heat treatment seems like the only safe option for sterilizing wooden pallets and wood cases.
  4. Equipment/Instrumentation: “Equipment used in the manufacture, processing, packing, or holding of a drug product shall be of appropriate design, adequate size, and suitably located to facilitate operations for its intended use and its cleaning and maintenance.” The intention is to not alter the safety, identity, strength, quality, or purity of the drug product beyond the official or other established requirements. What would happen if lubricants/coolants or any other substance, not intended to be part of the product, comes in contact with the product?
  5. Procedures and documentation: “There shall be written procedures for production and process control designed to assure that the drug products have the identity, strength, quality, and purity they purport or are represented to possess. Such procedures shall include all requirements of this subpart. These written procedures, including any changes, shall be drafted, reviewed, and approved. When we have followable, well written, clear, and specific procedures, we avoid possible errors that can get us in trouble.
  6. Defects Investigation: “Written production and process control procedures shall be followed in the execution of the various production and process control functions and shall be documented at the time of performance. Any deviation from the written procedures shall be recorded and justified.” We want to be successful, for that we need to learn from failures, understanding the root causes, correcting and preventing re-occurrence is what will keep you competitive. As you can see this requirement is essential for, quality, business and to evidence that such deviations did not adulterate the product.
  7. Process controls: Besides written procedures and deviations management, operation controls are pivotal in guaranteeing the quality as well as complete documentation of your process. These controls will vary depending on your technology and your product. If you do alcohol (ethanol) extraction, for example,  you want to keep an eye on the temperature, dissolution time, and even have color standards to be able to quickly and correctly identify possible abnormalities, while you can still correct the mistake. In-process product testing will allow you to monitor “performance of those manufacturing processes that may be responsible for causing variability in the characteristics of in-process material and the final product.”

Regardless of federal regulatory guidance, quality controls can be that one factor which can make or break your business. Why re-invent the wheel?

California Releases Draft Medical Cannabis Regulations

By Aaron G. Biros
No Comments

Last week, Governor Brown’s Administration released a set of proposed rules for the medical cannabis, attempting to provide some oversight to the once unregulated market. In 2015, the governor signed three bills into law that established a regulatory framework via the Medical Cannabis Regulation and Safety Act. That legislation set up the Bureau of Medical Cannabis Regulation inside the Department of Consumer Affairs as the overseeing regulatory agency.

According to the press release, the proposed regulations for manufacturing and cultivation have also been published. “The proposed licensing regulations for medical cannabis are the result of countless hours of research, stakeholder outreach, informational sessions and pre-regulatory meetings all across the state,” says Lori Ajax, chief of the Bureau of Medical Cannabis Regulation. “And while we have done quite a bit of work and heard from thousands of people, there is still so much more to do. In order to make our program successful we still need your feedback.”

According to their website, the legislation divides responsibility for licensing businesses between three regulatory bodies: The CA Department of Food and Agriculture the CA Department of Public Health and the Bureau of Medical Cannabis Regulation, which will be the leading body in charge of licensing. The proposed regulations are not set in stone, but give us an important glimpse into how the state hopes to regulate the market.

Among the proposed rules are a number of regulatory compliance nuances expected to raise prices, but provide extra measures to protect consumer safety. According to the SF Gate, regulators expect prices could climb $524 per pound. But with that price jump comes a lot of regulations that other states have so far successfully implemented. The laboratory testing and traceability stipulations are presumably designed to safeguard public health, preventing things like black market diversion and off-label pesticide use.

The proposed ‘cannabis product symbol’

In addition to the medical regulations, the proposed manufacturing regulations set some notable requirements. Those rules are set by the Office of Manufactured Cannabis Safety, established in the Center for Environmental Health of the California Department of Public Health (CDPH) after the 2015 legislation was signed into law. Good Manufacturing Practices, food product standards, operational and labeling requirements are included in the provisions, along with a list of licensing tiers, application requirements and fees. They have a handy summary of the proposed regulations for those looking for the key highlights.

Omar Figueroa, an attorney with a cannabis law practice in California, says his clients in the industry are preparing to suggest changes to the proposed regulations and possibly legal challenges. “They are looking at this as overregulation by people that are not in the cannabis industry,” says Figueroa. “These are outsiders with a limited knowledge base creating somewhat uninformed regulations.” He says a good example of this is the potency limit on infused products. “They make perfect sense for [the recreational market] but for the medical market it is simply unacceptable. Patients develop a tolerance to THC and would have to increase their caloric intake and buy more infused products if this proposed regulation becomes final.” He says there are a number of regulations that seem kind of arbitrary. “Like prohibiting cannabis-infused caffeine products; there doesn’t seem to be a necessity in the rulemaking for this,” says Figueroa. “A lot of these regulations are going to be susceptible to challenges because California requires regulations to be necessary and alternatives to be considered.”

Although the lab testing regulations won’t be published for another few days, Figueroa expects them to be a huge disruptor for the market. “Most labs in the state are not ISO 17025-accredited, which means many labs might not be able to issue certificates of analysis when the regulations get enforced,” says Figueroa. He says it is safe to say California regulators are looking at other jurisdictions, like Colorado and Oregon for example, in crafting these rules, but we can expect a sea change in these regulations before they get enforced.

Manufacturers will be required to use a cannabis product symbol with a ‘THC!’ marking on their labels. There is also a 100-milligrams-per-package limit for THC in infused products, which is similar to rules we saw Colorado and Oregon roll out during a preliminary period of legal recreational cannabis.

For those looking to get involved in the regulatory process, there is a 45-day comment period on the proposed rules.

Soapbox

Human Error? No Problem

By Dr. Ginette M. Collazo
No Comments

If you are in the business of growing cannabis, you should be aware of the common reasons for production losses, how to address root causes and how to prevent future occurrences in a sustainable way. Human error is the number one root cause identified in investigations for defects in the cultivation business. Sadly, little is known about the nature of these errors, mainly because our quest for the truth ends where it should begin, once we know it was a human error or is “someone’s fault.”

Yes, human error usually explains the reason for the occurrence, but the reason for that error remains unexplained and consequently the corrective and preventive actions fail to address the underlying conditions for that failure. This, in turn, translates into ineffective action plans that result in creating non-value added activities, wasting resources and money as well as product.

Human error can occur when workers are in direct contact with the plant

So after investigating thousands of human error events and establishing systems to improve human reliability in manufacturing facilities, it became even clearer to me, the need to have good, human-engineered standard operating procedures (SOPs).

In the cannabis growing process, there are different types of mistakes that, when analyzed, all can be addressed in the same manner. For example, some common errors that we see are either overwatering or nutrient burn, which can occur when the plant is overfed. The same is true in the opposite scenario; underfeeding or under watering lead to problems as well. If your process is not automated, the reason for these failures was most likely human error. Now, why did the person make that mistake? Was there a procedure in place? Was the employee trained? Is there a specific process with steps, sub-steps, quantities and measures? Were tools available to be able to do the task correctly? There is so much that can be done about these questions if we had clear, well-written and simple, but specific instructions. The benefits greatly outweigh the effort required.

Also, besides providing step-by-step instructions to avoid commission errors (to perform incorrectly as opposed to omit some step), there are other types of errors that can be avoided with SOPs.

Decision making like detecting nutrient deficiencies can lead to human error.

Decision-making is another reason why we sometimes get different results than the ones expected. If during your process there are critical, knowledge-based decisions, workers need to be able to get all the information to detect as well as correct situations. Some decisions are, for example, when (detection) and how (steps) should I remove bud rot? Is there a critical step in the process (caution) to avoid other plants from becoming affected? Any information on the what, how, when, where and why reduces the likelihood of a decision error, later described as obvious.

When we face manufacturing challenges like nutrient deficiency in a particular stage, mold, fungus, gnats or even pollination of females, we want to do whatever we can to prevent it from happening again. So consider that from avoiding to detecting errors, procedures are a critical factor when improving human performance.

Here are some guidelines when writing procedures to prevent human error.

  1. Use them. Enforce the use of procedures at all times. As humans, we overestimate our abilities and tend to see procedures as an affront to our skills.
  2. Make sure it is a helpful procedure and users are involved in the process. People that participate in writing rules are more likely to follow them.
  3. Make sure they are available for their use.
  4. All critical activities should have a procedure.
  5. The procedure needs to be clear, have a good format, clear graphics, appropriate level of detail and specific presentation of limits.
  6. Make sure that facts, sequence and other requirements are correct and all possible conditions are considered e.g. “what if analysis”.

Human error won’t be eradicated unless we are able to really identify what is causing humans to err. If eliminating or “fixing” the actual individual eliminates or potentially reduces the probabilities of making that mistake again, then addressing the employee would be effective. But if there is a chance that the next in line will be able to make the same mistakes, consider evaluating human factors and not the human. Take a closer look and your process, system and ultimately your procedures.

Operational Inefficiencies in Commercial Cannabis Cultivation

By Drew Plebani
2 Comments

From the perspective of sustainable cannabis cultivation models, it seems clear that outside of the particular cultivation methodology adopted, that operational efficiency and the implementation of lean manufacturing principles will be necessary for successful and truly “sustainable” businesses, in the current, ever growing, cannabis space.

Implementing lean manufacturing principles as an integral part of the cannabis cultivation facility just makes sense- it is a manufacturing operation after all. From a lean perspective, doing away with the non-value-added costs in the supply chain and production model are quite important.

Let’s look at this case study as evidence for the necessity of operational efficiency:

A 300-light flowering, indoor cultivation facility in Colorado.

The system was purchased with ongoing pest/disease issues, recent updates to Colorado’s approved pesticide list, had prompted the implementation of an updated integrated pest management (IPM) program, which had been moderately successful in developing an albeit short-term solution to keeping ongoing root aphids, powdery mildew, and botrytis, to name a few, at bay.

This existing facility was producing roughly 60 pounds of trimmed cannabis per week, equivalent to almost $6M annual gross, however they were losing a percentage of their yields to product that did not pass Colorado’s contaminant testing requirements.

It is important to note that any deviation from the existing manufacturing schedule and system would create a change to the potential productivity of the system, for better or worse.

At the most basic level, one would hope that a new operator taking over an existing facility would analyze the system and implement incremental or perhaps major changes to create more efficient and profitable outcomes. That being said, currently the average grower likely doesn’t have much understanding of the lean manufacturing process. That will undoubtedly change.

When we look at basic manufacturing facility operations, on an annual gross potential basis, each daily task not completed on the existing manufacturing timeline is, at least, a 0.3% (1/365) loss in potential productivity. In monetary terms, for this particular facility, each 0.3% equates to a potential $18,000 in lost productivity.

The information that follows is taken from observations during the first week of this facility ownership transition and below is a generalized outline representing just one aspect of the operational inefficiencies (created or existing) that were observed :

  • Plant group A put into flowering 4 days behind schedule (4 days x 0.3%) =1.2%
  • Plant group B transplanted 3 days behind =0.9%
  • Plant group C transplanted 7 days behind =2.1%
  • Plant group D (clones) taken 7 days behind =2.1%
  • IPM applications not completed for 7+ days

That equals a 6.3% loss in potential annual productivity, which translates into a rough estimate of up to $378,000 in lost revenue.

Changes to the nutrient program in the midst of the plant’s life cycle had created nutrient deficient plants in all stages of vegetative and flowering growth, coupled with changes to the existing IPM program, all add to the potential losses incurred. Deviations in the plant nutrition program and IPM scheduling are hard to quantify mid-cycle, but will certainly be quantifiable when the hard numbers come home to roost.

These inefficiencies, once compounded, could potentially equal more than a 20% loss in potential productivity during the subsequent 3.5 month plant cycle. The current 60 pounds-per-week would likely be reduced for the next 2 months, down to roughly 50 pounds, or even much less, per-week. This could become a loss upwards of $500,000 in annual potential revenue in the first quarter of operation alone.

These seemingly small and incremental delays in the plant production cycle are all greatly compounded. The end result is that each subsequent cycle of plants is slightly smaller due to delays in transplanting and less days at maximized vegetative growth, etc. Undoubtedly, the cumulative effect of these operational inefficiencies creates a significant drop in the existing level of productivity, with the end result being a significant, undesired loss of revenue.

The sum of the lessons learned from this cultivation facility, is this: a sustainable operation, in the most pragmatic sense, is an efficient one both in terms of productivity and in terms of the carbon footprint and waste generated. The more streamlined and successful the operations are, the greater likelihood of success. Perhaps all of this is to say don’t forget about all the little parts that make up the whole, and strive to create a work environment/corporate culture that empowers your employees, your managers and all involved to participate and contribute to the process of improving the operations for mutual benefit.

Lessons learned from the aerospace manufacturing industry: Even the smallest zip tie on a spaceship matters! Some food for thought: If it’s truly beneficial it should stick around… If it is beneficial and it’s not sticking around, then there are limiting factors in the system that need to be addressed.

Hemp-Derived CBD Oil: Maintaining Quality in the Manufacturing Process

By Aaron G. Biros
3 Comments

Hemp-derived cannabidiol (CBD) products are quickly becoming a burgeoning industry. Consumers can purchase the products in all fifty states and can receive the therapeutic effects of certain cannabinoids without any psychoactivity. Commonly used to help treat inflammation, pain, seizures and anxiety, CBD comprises a sizable portion of the cannabis market that patients and consumers are flocking to.

Founded by Paul Benhaim in 2013, Colorado-based Elixinol is reaching this market with a line of hemp-derived CBD oils and capsules. The company has grown rapidly and now has agreements with exclusive distributors in Japan, Puerto Rico, The United Kingdom and South Africa.

Paul Benhaim founded Elixinol in 2013
Paul Benhaim founded Elixinol in 2013

According to Chris Husong, sales and marketing director at Elixinol, achieving superior quality is central to the company’s growth strategy. “We are thinking about the long-term play here,” says Husong. Achieving the highest quality possible starts with sourcing from industrial hemp farms in Northern Europe, according to Husong. Through good manufacturing practices (GMPs), the company pays close attention to every detail involved in producing the hemp-derived CBD oil.

Safety and transparency are two core tenants in the company’s goal to strive for quality products. “We use third-party independent labs for our testing including one in Northern Europe where we source from in addition to Proverde Labs when it reaches us in Colorado,” says Husong. They test their products for over 300 chemicals (including pesticides, residual solvents and heavy metals) as well as for microbiological contamination and a unique terpene profile using GC-MS/GC-FID.

Co-founder Paul Benhaim at their extraction and testing facility in Europe.
Co-founder Paul Benhaim at their extraction and testing facility in Europe.

In addition to stringent manufacturing safety procedures and testing, tracking is a huge part of meeting quality standards. Each product batch also has a lot number. While batch numbers are a requirement in GMPs, lot numbers mean that they are well equipped in the event of a product recall. After the product is packaged, they perform additional spot-checks periodically.

Contract manufacturing and white-labeling products is a large part of their business, so the company needs to meet rigorous quality standards for their partners as well. “We provide our oil to a variety of associates, but we are always looking for new partners on the cutting edge, innovating with new products that we can help with,” says Husong. Very often, this means doing a full plant extraction for different uses. Utilizing a full-spectrum plant extraction helps maintain a well-balanced cannabinoid profile with many of the original terpenes found in the plant.

Japan's first lady, Akie Abe, purchasing Elixinol's hemp-derived CBD oil.
Akie Abe, first lady of Japan, purchasing Elixinol’s hemp-derived CBD oil.

What makes their product so appealing to consumers is not just the quality, but also the method of delivery into the bloodstream and very precise dosing. “Our liposome products have a relatively new technology that allows the oil to be absorbed into your system via fatty acids, which lets you absorb the compounds much faster, requiring less of it and more consistency,” adds Husong. In addition to their fast-acting delivery mechanism, they produce capsules dosed to precisely fifteen milligrams and a delivery system they call ‘Xpen,’ which draws the oil in an oral applicator to a precise dose of fifteen milligrams every time.

After the manufacturing process, the company pays close attention to detail in their packaging and distribution. “The packaging is built to maintain that quality in the manufacturing process and to extend the shelf life of our products,” says Husong. The technology that goes into their packaging involves using Miron Violet glass, which is anti-fungal and prevents external light from deteriorating the oil inside.

This growing sector in the cannabis market is representative of a greater trend: the commodification of hemp and cannabis. When businesses like Elixinol scale up production of goods such as CBD oil, a lens focused on consistency and quality can not only improve business operations but also raise the standard across the entire industry.

Wellness Watch

Strain-Specific Labeling Edibles

By Dr. Emily Earlenbaugh, PhD.
No Comments

As the marketplace for cannabis products continues to evolve, we are seeing more and more strain-specific edible products hitting the shelves. Still, the majority of products remain strain-ambiguous, simply mentioning that the products contain cannabis and perhaps whether they are indica or sativa blends. While there are compelling reasons to go strain-specific, there are also serious challenges to doing it well.

The most compelling argument for strain-specific edibles is that your patients are more likely to get what they want (and thus more likely to come back for more). Many strain sensitive patients avoid almost all edibles because of a few bad experiences. Without knowing what strain you are consuming, you are left to gamble with your experience. Rather than take the risk, many patients choose to make edibles at home.

When talking to patients, I hear countless stories of bad experiences, along with the desire for more strain-specific edibles. Of course, creating strain-specific products is harder than it sounds. For one thing, it is difficult to source a consistent supply of large amounts of a single strain. This requires either an incredibly well run cultivation operation in-house, or strong, stable relationships with growers that are willing to grow a particular strain consistently.

In addition, labeling becomes more complex when you are strain-specific. Instead of one product, with one package and one label, you need to have individual labels for each strain. If you are using multiple strains, you need multiple labels. For small edibles manufacturers, things can get complicated. They usually need to source cannabis strains from the local market and may not be able to get a lot of consistency. This means plenty of small batches of single strains, rather than a consistent supply of a few set strains, and requires smaller batches of packaging, raising the cost of your inputs. So for many, the solution is to make one label and shift the strains depending on what’s in stock without notifying the consumer. Another method is to blend whatever strains you can find into one type of mixed strain product. While this offers an easy method for producers, it can have negative effects on the patient.

Those continually shifting blends of hybrid, indica or sativa edible products typically contain cannabis trim from many different strains. As we know, strains produce a large variety of effects, from sedative to energizing, relaxing to panic inducing. Mixing many carefully designed strains together can create all kinds of strange effects. It can be akin to mixing medications; it is hard to say what the result of the mix of chemicals will be. This can leave strain-sensitive patients feeling like each edible experience is a roll of the dice, wondering, “Will this help me or hurt me?” A number of patients have told me they gave up on edibles all together.

For those looking to use strain-specific labeling, but feeling held back by issues with sourcing and packaging consistency, try making one product package (that is strain ambiguous) with space for a strain specific sticker. Printing stickers on demand will cost less, then you can label the strains you currently have access to. Giving your patients access to strain information allows them to make an informed choice about what they are taking. Consumer education can draw in a customer base that is already primed to like your product and increases the chances that they will ultimately become satisfied, repeat customers.

DEA To Consider Rescheduling Cannabis, Could Mean Policy Shift

By Aaron G. Biros
No Comments

In a letter sent to lawmakers last week, the Drug Enforcement Agency (DEA) announced plans to make a decision on rescheduling cannabis by mid-2016. The announcement could represent the culmination of a shift in the federal government’s attitude toward cannabis legalization.Dea_color_logo

Currently, cannabis is a Schedule I narcotic, meaning the government views it as lacking medical benefits and have a high potential for abuse. The rescheduling of cannabis has the potential to open the floodgates for research, including much needed clinical trials.

Derek Peterson, chief executive officer at Terra Tech, a cannabis-focused agriculture company, believes this bodes well for the growth potential of the cannabis industry. “From the perspective of quality and safety standards, I find it unlikely that rescheduling it would negatively impact the degree to which cannabis is examined,” says Peterson. “It’s unnecessarily high position on the DEA drug schedule does nothing but limit the industry’s potential for growth, stall any meaningful pharmaceutical testing and increase law enforcement’s ability to prosecute non-violent drug offenders,” adds Peterson.

The rescheduling could also potentially allow for the prescribing of cannabis for patients. Stephen Goldner, founder of Pinnacle Labs and president of Regulatory Affairs Associates, is hopeful this will lead to a greater shift in public attitude towards cannabis. “The DEA’s announcement is a clear message to all States and possibly even to United Nations policy makers: even the DEA is willing to reconsider cannabis,” says Goldner. “Since the DEA is reconsidering cannabis, state politicians and local police departments can also be flexible and move away from prohibition, towards the regulation of cannabis.”

The rescheduling of cannabis could have a tremendous impact on the growth of the cannabis industry, including more clinical trials, medical research and physician participation. It could also open the door for more federal agency involvement, as the Schedule I status inhibits any EPA research on cannabis pesticide use or FDA guidance on food and drug good manufacturing practices. When reached for comment, the FDA’s press office said they could not speculate on any involvement in the matter.

Ask the Expert: Straight Talk on Safety, Defense and Security, Part II

By Aaron G. Biros, Bruce E. Lesniak, Lezli Engelking
1 Comment

In this week’s Straight Talk on Safety, Defense and Security, we answer a reader’s question about traceability in quality processes and offer some practical advice for building a safety and security strategy. Travis Lodolinsky from Gleason Technology submitted this week’s question. For a response, we sit down with Lezli Engelking, founder of the Foundation of Cannabis Unified Standards (FOCUS), to help answer your questions. If you have questions about safety, defense and security in cannabis, please ask them in the comments section below and we will address them in the next edition of Straight Talk on Safety, Defense and Security.

T. Lodolinsky: How are safety processes being tracked in the industry to ensure regulations and quality assurance are being uniformly enforced throughout?

Lezli Engelking: In related industries, such as herbal products or pharmaceuticals, the FDA has created guidelines, or current good manufacturing processes (CGMP) that control for the quality, consistency and safety of the products being produced. Businesses must be certified by independent third parties to demonstrate they are following CGMP to protect public health and consumer safety. CGMP is a proactive approach to quality assurance. A basic tenant of CGMP is that quality cannot be tested into a product after it is made; quality must be built into the product during all stages of the manufacturing process. One common misconception is that CGMP only covers the process of manufacturing itself. CGMP actually covers all aspects of the production process including materials, premises, equipment, storage, staff training and hygiene, how complaints are handled and record keeping.

Because cannabis is federally illegal in the US, the FDA has not developed cannabis-specific CGMP guidelines, so lawmakers do not have the benefit of having those guidelines available to base regulations on. So to answer your question, state cannabis regulations do not track processes and procedures used by cannabis businesses to control for safety or quality because they do not have the federal guidelines. Instead, most state cannabis regulations currently take a reactive approach to safety, mandating only for testing of the final product. While testing is an extremely important and valuable part of any quality management program, just analytics is not enough.

This is precisely why FOCUS was created and how they assist business owners and regulators, while fulfilling the mission of protecting public health, consumer safety and safeguarding the environment. The FOCUS standards are a cannabis-specific system of guidelines (cannabis-specific current good manufacturing practices) to ensure products are consistently produced according to quality standards. FOCUS provides detailed guidance and independent, third party auditing services for all key aspects of the cannabis industry including cultivation, extraction, infusion, retail, laboratory, security, packaging, labeling and sustainability.

CannabisIndustryJournal: What advice can you offer to cannabis businesses for product safety, defense and security prior to standardization?

Bruce E. Lesniak: Businesses that make products infused with cannabis (I call these businesses “plus one” companies because they produce products that include one more ingredient than traditional food products), require a carefully written master plan that specifically addresses the unique qualities, sensitivities and critical areas of the business. When building a comprehensive plan I address three questions:

  • Why (identify the why, this is your preventative, overarching strategy)?
  • How (addresses the “why question” with products, services and training)?
  • What (what is your reactive strategy that addresses actions and activities to be performed in the event of a breech)?

First and foremost, consumer-facing businesses must safeguard their products to the public. One product recall or illness related incident could spell disaster. Build your plan correctly the first time. Contact an industry expert to review your facility and help build and implement your plan. This will save you money by quickly exposing vulnerabilities and providing corrective measures specific to your business needs and requirements. Even though product safety and defense are closely related to security and should share a complementary strategy, product safety and defense are unique (due to standards and regulations), and should be treated as such.

Banks not accepting industry money complicates normal business operations and security planning, causing retail operations to handle and store large sums of cash. I asked industry expert and security professional, Tony Gallo of Sapphire Protection LLC, what is the single most important piece of security equipment you are currently providing for the retail and dispensary owner? “Design an air tight policy of handling money,” says Gallo. “Remove money often from cash registers and place it into the best safe for your application!”

Spend time familiarizing yourself with all things product safety and defense (there are volumes written on food safety and food defense, thus the “plus one” reference). This a great starting point and protecting the consumer protects your business. When it comes to designing your security application, consult an expert! Take into account that the cannabis industry is unique due to its “plus one” ingredient. Therefore you need to build your security systems, applications and policies to systematically protect your employees, facility, suppliers, transportation, manufacturing, distribution, warehousing, supply chain and brand.