Tag Archives: illness

Lessons from Food Safety: Applications to the Cannabis Industry

This free, 1-hour webinar co-hosted by NEHA and CIJ, will be held May 2nd at 1pm EST: A hazard analysis and critical control points (HACCP) plan has historically been applied by the food manufacturing industry and later foodservice to control food safety. Both a food facility and a restaurant strive to sell food that is safe for consumption, that will not cause injury or illness. As the cannabis industry grows in the manufacture of cannabis-infused products, namely edibles, lessons can be learned from the progress and success of programs like Good Manufacturing Practices, HACCP, Juice HACCP and the Food Safety Modernization Act. One side of the coin is compliance with regulations; the other side of the coin is taking all necessary steps to ensure a safe product for the consumer. We will also discuss the disparities in state-to-state cannabis safety and quality regulations, and implications for infused-product manufacturers.

oregon

Turning the Oregon Outdoor Market into a Research Opportunity

By Dr. Zacariah Hildenbrand, Dr. Kevin A. Schug
No Comments
oregon

Much has been made about the plummeting market value of cannabis grown outdoors in Oregon. This certainly isn’t a reflection of the product quality within the marketplace, but more closely attributable to the oversaturation of producers in this space. This phenomenon has similarities to that of ‘Tulip Mania’ within the Dutch Golden Age, whereby tulip bulbs were highly coveted assets one day, and almost worthless the next. During times like these, it is very easy for industry professionals to become disheartened; however, from a scientific perspective, this current era in Oregon represents a tremendous opportunity for discovery and fundamental research.

Dr. Zacariah Hildenbrand
Dr. Zacariah Hildenbrand, chief technical officer at Inform Environmental.

As we have mentioned in previous presentations and commentaries, our research group is interested in exploring the breadth of chemical constituents expressed in cannabis to discover novel molecules, to ultimately develop targeted therapies for a wide range of illnesses. Intrinsically, this research has significant societal implications, in addition to the potential financial benefits that can result from scientific discovery and the development of intellectual property. While conducting our experiments out of Arlington, Texas, where the study of cannabis is highly restricted, we have resorted to the closet genetic relative of cannabis, hops (Humulus lupulus), as a surrogate model of many of our experiments (Leghissa et al., 2018a). In doing so, we have developed a number of unique methods for the characterization of various cannabinoids and their metabolites (Leghissa et al., 2018b; Leghissa et al., 2018c). These experiments have been interesting and insightful; however, they pale in comparison to the research that could be done if we had unimpeded access to diverse strains of cannabis, as are present in Oregon. For example, gas chromatography-vacuum ultraviolet spectroscopy (GC-VUV) is a relatively new tool that has recently been proven to be an analytical powerhouse for the differentiation of various classes of terpene molecules (Qiu et al., 2017). In Arlington, TX, we have three such GC-VUV instruments at our disposal, more than any other research institution in the world, but we do not have access to appropriate samples for application of this technology. Similarly, on-line supercritical fluid extraction – supercritical fluid chromatography – mass spectrometry (SFE-SFC-MS) is another capability currently almost unique to our research group. Such an instrument exhibits extreme sensitivity, supports in situ extraction and analysis, and has a wide application range for potential determination of terpenes, cannabinoids, pesticides and other chemical compounds of interest on a single analytical platform. Efforts are needed to explore the power and use of this technology, but they are impeded based on current regulations.

Dr Kevin Schug
Dr. Kevin A. Schug, Professor and the Shimadzu Distinguished Professor of Analytical Chemistry in the Department of Chemistry and Biochemistry at The University of Texas at Arlington (UTA)

Circling back, let’s consider the opportunities that lie within the abundance of available outdoor-grown cannabis in Oregon. Cannabis is extremely responsive to environmental conditions (i.e., lighting, water quality, nutrients, exposure to pest, etc.) with respect to cannabinoid and terpene expression. As such, outdoor-grown cannabis, despite the reduced market value, is incredibly unique from indoor-grown cannabis in terms of the spectrum of light to which it is exposed. Indoor lighting technologies have come a long way; full-spectrum LED systems can closely emulate the spectral distribution of photon usage in plants, also known as the McCree curve. Nonetheless, this is emulation and nothing is ever quite like the real thing (i.e., the Sun). This is to say that indoor lighting can certainly produce highly potent cannabis, which exhibits an incredibly robust cannabinoid/terpene profile; however, one also has to imagine that such lighting technologies are still missing numerous spectral wavelengths that, in a nascent field of study, could be triggering the expression of unknown molecules with unknown physiological functions in the human body. Herein lies the opportunity. If we can tap into the inherently collaborative nature of the cannabis industry, we can start analyzing unique plants, having been grown in unique environments, using unique instruments in a facilitative setting, to ultimately discover the medicine of the future. Who is with us?


References

Leghissa A, Hildenbrand ZL, Foss FW, Schug KA. Determination of cannabinoids from a surrogate hops matrix using multiple reaction monitoring gas chromatography with triple quadrupole mass spectrometry. J Sep Sci 2018a; 41: 459-468.

Leghissa A, Hildenbrand ZL, Schug KA. Determination of the metabolites of Δ9-Tetrahydrocannabinol using multiple reaction monitoring gas chromatography – triple quadrapole – mass spectrometry. Separation Science Plus 2018b; 1: 43-47.

Leghissa A, Smuts J, Changling Q, Hildenbrand ZL, Schug KA. Detection of cannabinoids and cannabinoid metabolites using gas chromatography-vacuum ultraviolet spectroscopy. Separation Science Plus 2018c; 1: 37-42.

Qiu C, Smuts J, Schug KA. Analysis of terpenes and turpentines using gas chromatography with vacuum ultraviolet detection. J Sep Sci 2017; 40: 869-877.

HACCP

Hazard Analysis and Critical Control Points (HACCP) for the Cannabis Industry: Part 1

By Kathy Knutson, Ph.D.
No Comments
HACCP

Hazard Analysis and Critical Control Points (HACCP) Defined

Farm-to-fork is a concept to describe the control of food safety starting in the fields of a farm and ending with deliciousness in my mouth. The more that is optimized at every step, the more food safety and quality are realized. Farm-to-fork is not a concept reserved for foodies or “eat local” food campaigns and applies to all scales of food manufacture. HACCP is like putting the last piece of a huge puzzle in the middle and seeing the whole picture develop. HACCP is a program to control food safety at the step of food processing. In states where cannabis is legal, the state department of public health or state department of agriculture may require food manufacturers to have a HACCP plan. The HACCP plan is a written document identifying food safety hazards and how those hazards are controlled by the manufacturer. While there are many resources available for writing a HACCP plan, like solving that puzzle, it is a do-it-yourself project. You can’t use someone else’s “puzzle,” and you can’t put the box on a shelf and say you have a “puzzle.”

HACCP is pronounced “ha” as in “hat” plus “sip.”

(Say it aloud.)

3-2-1 We have liftoff.

The history of HACCP starts not with Adam eating in the garden of Eden but with the development of manned missions to the moon, the race to space in the 1950s. Sorry to be gross, but imagine an astronaut with vomiting and diarrhea as a result of foodborne illness. In the 1950s, the food industry relied on finished product testing to determine safety. Testing is destructive of product, and there is no amount of finished product testing that will determine food is safe enough for astronauts. Instead, the food industry built safety into the process. Temperature was monitored and recorded. Acidity measured by pH is an easy test. Rather than waiting to test the finished product in its sealed package, the food industry writes specifications for ingredients, ensures equipment is clean and sanitized, and monitors processing and packaging. HACCP was born first for astronauts and now for everyone.HACCP

HACCP is not the only food safety program.

If you are just learning about HACCP, it is a great place to start! There is a big world of food safety programs. HACCP is required by the United States Department of Agriculture for meat processors. The Food and Drug Administration (FDA) requires HACCP for seafood processing and 100% juice manufacture. For all foods beyond meat, seafood and juice, FDA has the Food Safety Modernization Act (FSMA) to enforce food safety. FSMA was signed in 2011 and became enforceable for companies with more than 500 employees in September of 2016; all food companies are under enforcement in September 2018. FSMA requires all food companies with an annual revenue greater than $1 million to follow a written food safety plan. Both FDA inspectors and industry professionals are working to meet the requirements of FSMA. There are also national and international guidelines for food safety with elements of HACCP which do not carry the letter of law.

The first step in HACCP is a hazard analysis.

Traditionally HACCP has focused on processing and packaging. Your organization may call that manufacturing or operations. In a large facility there is metering of ingredients by weight or volume and mixing. A recipe or batch sheet is followed. Most, but not all, products have a kill step where high heat is applied through roasting, baking, frying or canning. The food is sealed in packaging, labeled, boxed and heads out for distribution. For your hazard analysis, you identify the potential hazards that could cause injury or illness, if not controlled during processing. Think about all the potential hazards:

  • Biological: What pathogens are you killing in the kill step? What pathogens could get in to the product before packaging is sealed?
  • Chemical: Pesticides, industrial chemicals, mycotoxins and allergens are concerns.
  • Physical: Evaluate the potential for choking hazards and glass, wood, hard plastic and metal.

The hazards analysis drives everything you do for food safety.

I cannot emphasize too much the importance of the hazard analysis. Every food safety decision is grounded in the hazard analysis. Procedures will be developed and capital will be purchased based on the hazard analysis and control of food safety in your product. There is no one form for the completion of a hazard analysis.

HACCP risk matrix
A risk severity matrix. Many HACCP training programs have these.

So where do you start? Create a flow diagram naming all the steps in processing and packaging. If your flow diagram starts with Receiving of ingredients, then the next step is Storage of ingredients; include packaging with Receiving and Storage. From Storage, ingredients and packaging are gathered for a batch. Draw out the processing steps in order and through to Packaging. After Packaging, there is finished product Storage and Distribution. Remember HACCP focuses on the processing and packaging steps. It is not necessary to detail each step on the flow diagram, just name the step, e.g. Mixing, Filling, Baking, etc. Other supporting documents have the details of each step.

For every step on the flow diagram, identify hazards.

Transfer the name of the step to the hazard analysis form of your choice. Focus on one step at a time. Identify biological, chemical and physical hazards, if any, at that step. The next part is tricky. For each hazard identified, determine the probability of the hazard occurring and severity of illness or injury. Some hazards are easy like allergens. If you have an ingredient that contains an allergen, the probability is high. Because people can die from ingestion of allergens when allergic, the severity is high. Allergens are a hazard you must control. What about pesticides? What is the probability and severity? I can hear you say that you are going to control pesticides through your purchasing agreements. Great! Pesticides are still a hazard to identify in your hazard analysis. What you do about the hazard is up to you.