Tag Archives: hygiene

Building An Integrated Pest Management Plan – Part 3

By Phil Gibson
No Comments

This is the third in a series of articles designed to introduce an integrated pest management framework for cannabis cultivation facilities. To see Part One, click here. For Part Two, click here. Part Four comes out next week and covers direct control options for pest reduction. More to come!

This is Part 3: Preventive Measures

Preventive measures are a great investment in the profitability of your operations. Our objective is to ensure successful repeat harvests forever. Build your procedures with this in mind. This means maintenance and regular review. We all realize that this work can be monotonous drudgery (we know!), but these procedures will ensure your success.

Figure 1: New Air Shower Access Installation

As a summary to begin, pest access must be limited wherever possible. Employees are the first place to start, but we must also return to our site map and review our facility design and workflows. Every operation has to move plants from nursery through harvest and post-harvest. Where should cleaning happen? Of course, you have to clean up post-harvest but when should this occur during the grow cycle? What is the best way to monitor and clean environmental management systems (i.e. air, water) and what are the weaknesses in the physical barriers between operations? Let’s walk through these issues one-by-one.

Employee Access and Sterile Equipment

Follow procedures to screen and protect your employees both to eliminate pests and to avoid exposing your employees to harmful chemicals or storage areas. Look for ways to isolate your workflow from pest access. Be certain that your facility is airtight and sealed with filtration of molds, spores and live organisms in your air intake areas. Air showers at your access points are important to screen your employees on their way into your gowning areas and grow facility. Clothing should be standardized and shoe coverings or crocs should be provided for all employees that access your interior. Look for ways to stop all pests (embedded, crawling, hopping or flying) in all of your room assignments (mothers, clone, veg, flower, trim and drying). This can be improved with shoe baths, sticky mats, frequent hygiene (hand washing and cleaning stations) and procedures for entry.

Always consider requiring hair & beard nets, shoe covers and disposable gloves in plant sensitive areas.

Chemical Access & Protective Equipment

Figure 2: Example Facility Map – Understand Workflow & Barriers to Pest Access

Personal protection equipment (PPE) is very important to protect any employee that will come in contact with materials, liquids or vapors for chemical resources. Establish procedures for chemical use and train employees in the safe handling of these materials. Typical equipment includes high density chemical protective gloves, boots, respirators, Tyvek (or equivalent protective wear) suits and eye protection or goggles.

Chemical access areas and their use should be restricted to employees familiar with their authorized application. Always remember that cannabis is an accumulator plant, and it will absorb and hold onto chemical treatments. Appropriate isolation and safety procedures must be followed for chemical use. Not following these restrictions can expose your employees to dangerous chemicals or get your entire harvests rejected at testing.

Facility Map & Workflow

Because insects would like to be everywhere and they come in many types (root zone, crawling, flying, microscopic, bacterial or biofilm), the facility workflow must understand where they are and how they might migrate if they penetrate your defenses. Note airflows in your rooms and fan locations so migrations can be predicted once an infestation is located. Where are your opportunities for full clean-up and disaster recovery in your building? Where should you stage maintenance filters, test kits, water and cleaning materials. How best to clean up and dispose of sealed garbage containers or cleaning materials?

Operational Cleaning & Post-Harvest Reset

When compiling your preventative measure documents, it is critical to create a repeatable operating procedure for cleaning and sanitizing your rooms, systems, and growing spaces after each harvest. Plant material handling, cleaning surfaces and wipe methods should all be documented in your Standard Operating Procedures (SOPs). Define what “clean” is. Removing plants and plant debris is pretty clear but define how to drain reservoirs, clean pipes, change filters and clean and sterilize your rooms. Operators must be trained in these SOPs and reminded of their content on a regular schedule. This is how you avoid outbreaks that can crush your profits.

Physical Barriers & Maintenance

Figure 3: HVAC Air Filtration, Dehumidification, & Air Movement, Onyx Agronomics

Document your sealed spaces and define your normal room and access door barrier interfaces. Review the status of any known cracks or gaps in your perimeter. Are there any known leaks or piping that has been seen as a risk or a problem in the past? Are there any discoloring or resident mold locations (Never happens, right?). Baseline how much time and people resource a harvest operation and cleaning effort should take. Will you do this after every harvest or compromise your risk by delaying to every third or fourth harvest? Create your barrier SOP.

Environmental Control & HVAC

Managing the air quality provided to your plants is critical to your yields. Controlling CO2, air movement rates (the leaf happy dance), humidity, air filtration and sterilization methods must be maintained and cleaned on a regular basis. Do you need to change the HEPA or other particulate filters? Is there any UV light sterilization maintenance? We have all seen the home HVAC air conduit cleaning commercials. Your commercial facility is no different. How will you clean your air and water plumbing systems? How often will you perform this full reset? When will you calibrate and data log your sensors for temperature, humidity, CO2 and water resources? Put everything about your environmental set points into your maintenance document and decide when to validate these. Molds, mildews and biofilm hazards are all waiting for unmonitored systems to open the door for access.

In Conclusion, This Week

If you’re an IPM nerd and this dynamic topic did not put you to sleep, you can read more detail and examples for your integrated pest management procedures in ourcomplete white paper for Integrated Pest Management Recommendations, download the document here.

In our next chapter, Direct Control Options, we will review what you can use to protect or recover control of your facility including both chemical and non-chemical tools and methods. In our final two chapters, we will discuss extermination of the determined pests that breach your defenses. And with great expectations, our final chapter will discuss emergency response and time to go to war!

Part Four comes out next week. See you again soon!

Reducing Cross Contamination in Your Lab

By Nathan Libbey
No Comments

Cross Contamination

Cross Contamination – noun – “inadvertent transfer of bacteria or other contaminants from one surface, substance, etc., to another especially because of unsanitary handling procedures. – (Mariam Webster, 2021). Cross contamination is not a new concept in the clinical and food lab industries; many facilities have significant design aspects as well as SOPs to deliver the least amount of contaminants into the lab setting. For cannabis labs, however, often the exponential growth leads to a circumstance where the lab simply isn’t large enough for the number of samples processed and number of analytical instruments and personnel needed to process them. Cross contamination for cannabis labs can mean delayed results, heightened occurrences of false positives, and ultimately lost customers – why would you pay for analysis of your clean product in a dirty facility? The following steps can save you the headaches associated with cross contamination:

Wash (and dry) your hands properly

Flash back to early pandemic times when the Tik Tok “Ghen Co Vy” hand washing song was the hotness – we had little to no idea that the disease would be fueled mostly by aerosol transmission, but the premise is the same, good hand hygiene is good to reduce cross contamination. Hands are often the source of bacteria, both resident (here for the long haul; attached to your hands) and transient (easy to remove; just passing through), as they come into contact with surfaces from the bathroom to the pipettor daily (Robinson et al, 2016). Glove use coupled with adequate hand washing are good practices to reduce cross contamination from personnel to a product sample. Additionally, the type of hand drying technique can reduce the microbial load on the bathroom floors and, subsequently tracked into the lab. A 2013 study demonstrated almost double the contamination from air blade technology versus using a paper towel to dry your hands (Margas et al, 2013).

Design Your Lab for Separation

Microbes are migratory. In fact, E. coli can travel at speeds up to 15 body lengths per second. Compared to the fastest Olympians running the 4X100m relay, with an average speed of 35 feet per second or 6 body lengths, this bacterium is a gold medal winner, but we don’t want that in the lab setting (Milo and Phillips, 2021). New lab design keeps this idea of bacterial travel in mind, but for those labs without a new build, steps can be made to prevent contamination:

  • Try to keep traffic flow moving in one direction. Retracing steps can lead to contamination of a previous work station
  • Use separate equipment (e.g. cabinets, pipettes) for each process/step
  • Separate pre- and post-pcr areas
  • Physical separation – use different rooms, add walls, partitions, etc.

Establish, Train and Adhere to SOPs

Design SOPs that include everything- from hygiene to test procedures and sanitation.

High turnover for personnel in labs causes myriad issues. It doesn’t take long for a lab that is buttoned up with cohesive workflows to become a willy-nilly hodgepodge of poor lab practices. A lack of codified Standard Operating Procedures (SOPs) can lead to a lab rife with contaminants and no clear way to troubleshoot the issue. Labs should design strict SOPs that include everything from hand hygiene to test procedures and sanitation. Written SOPs, according to the WHO, should be available at all work stations in their most recent version in order to reduce biased results from testing (WHO, 2009). These SOPs should be relayed to each new employee and training on updated SOPs should be conducted on an ongoing basis. According to Sutton, 2010, laboratory SOPs can be broken down into the following categories:

  • Quality requirements
  • Media
  • Cultures
  • Equipment
  • Training
  • Sample handling
  • Lab operations
  • Testing methodology
  • Data handling/reporting/archiving
  • Investigations

Establish Controls and Monitor Results

Scanning electron micrograph shows a colony of Salmonella typhimurium bacteria. Photo courtesy of CDC, Janice Haney Carr
Scanning electron micrograph shows a colony of Salmonella typhimurium bacteria. Photo courtesy of CDC, Janice Haney Carr

It may be difficult for labs to keep tabs on positivity and fail rates, but these are important aspects of a QC regimen. For microbiological analysis, labs should use an internal positive control to validate that 1) the method is working properly and 2) positives are a result of target analytes found in the target matrix, not an internal lab contamination strain. Positive controls can be an organism of choice, such as Salmonella Tranoroa, and can be tagged with a marker, such as Green Fluorescent Protein in order to differentiate the control strain. These controls will allow a lab tech to discriminate between a naturally contaminated specimen vs. a positive as a result of cross-contamination.

Labs should, in addition to having good QC practices, keep track of fail rates and positivity rates. This can be done as total lab results by analysis, but also can be broken down into customers. For instance, a lab fail rate for pesticides averages 4% for dried flower samples. If, during a given period of review, this rate jumps past 6% or falls below 2%, their may be an issue with instrumentation, personnel or the product itself. Once contamination is ruled out, labs can then present evidence of spikes in fail rates to growers who can then remediate in their own facilities. These efforts in concert will inherently drive down fail rates, increase lab capacity and efficiency, and result in cost savings for all parties associated.

Continuous Improvement is the Key

Cannabis testing labs are, compared to their food and clinical counterparts, relatively new. The lack of consistent state and federal regulation coupled with unfathomable growth each year, means many labs have been in the “build the plane as you fly” mode. As the lab environment matures, simple QC, SOP and hygiene changes can make an incremental differences and drive improvements for labs as well as growers and manufacturers they support. Lab management can, and should, take steps to reduce cross contamination, increase efficiency and lower costs; The first step is always the hardest, but continuous improvement cannot begin until it has been taken.


References

Margas, E, Maguire, E, Berland, C. R, Welander, F, & Holah, J. T. (2013). Assessment of the environmental microbiological cross contamination following hand drying with paper hand towels or an air blade dryer. Journal of Applied Microbiology, 115(2), 572-582.

Mariam Webster (2021. Cross contamination. Retrieved from https://www.merriam-webster.com/dictionary/cross%20contamination

Milo, M., and Phillips, R. (2021). How fast do cells move? Cell biology by the numbers. Retrieved from http://book.bionumbers.org/how-fast-do-cells-move/

Robinson, Andrew L, Lee, Hyun Jung, Kwon, Junehee, Todd, Ewen, Perez Rodriguez, Fernando, & Ryu, Dojin. (2016). Adequate Hand Washing and Glove Use Are Necessary To Reduce Cross-Contamination from Hands with High Bacterial Loads. Journal of Food Protection, 79(2), 304–308. https://doi.org/10.4315/0362-028X.JFP-15-342

Sutton, Scott. (2010). The importance of a strong SOP system in the QC microbiology lab. Journal of GXP Compliance, 14(2), 44.

World Health Organization. (2009). Good Laboratory Practice Handbook. Retrieved from https://www.who.int/tdr/publications/documents/glp-handbook.pdf

What Cannabis Businesses Need to Do to Adapt to COVID-19

By Arthur Gulumian
No Comments

How COVID-19 Impacted Cannabis Businesses

Before jumping into what cannabis businesses can do amid this pandemic, it is crucial to explore the specifics behind how the virus impacted the industry as a whole. From a surface level, it seems obvious what happened: dispensaries had to implement social distancing protocols, require both customers and employees to wear masks and limited the number of customers that can be present on the point-of-sale floor room. But COVID-19 did not merely make shopping experiences a tab bit inconvenient.

Cannabis producers, and especially those involved in manufacturing cannabis goods, experienced an apparent disruption in their production schedules. If the metals and plastics were sourced from Wuhan, Shenzhen or any other dense industrial area in China, supplies suddenly stopped coming, and producers were left with limited production options. Businesses did not consider the value of having various vendors and instead put all their stock in one source. A disruption in production inherently impacts dispensaries.

COVID-19 impacted more than just supply chains, however. For instance, investors are now less likely than before the pandemic to invest in early-stage cannabis companies. Competition for capital now far outweighs the supply for cannabis companies, and we have seen (and will continue to see) a drop in company valuations. Indeed, COVID-19 is affecting more than just currently existing operators but those yet struggling to create cannabis businesses of their own.

Vendors & Supplies

A broad survey conducted by the Institute for Supply Management (ISM) between February 22, 2020 and March 5, 2020 found that 75% of U.S. companies had experienced supply chain disruption as a result of the COVID-19 outbreak. An estimated 90-95% of all components utilized in cannabis vaporizer pens were sourced from manufacturers in Shenzhen, China. In contrast, very few companies used domestic manufacturers. While this is just one example, it is equally important to note that cannabis-specific equipment and supply shortages were not the only factors that disrupted cannabis businesses. Shortages of personal protective equipment (PPE) presented challenges for cannabis dispensaries, producers and manufacturers that continued to operate during the “shelter in place” orders.

Operators must establish a resilient supply chain. Do not simply limit your options to one specific region, as this can be a costly mistake. Operators must cultivate an in-depth understanding of their supply chain beyond critical suppliers and their stress points; they need to develop and follow a systematic supply process that takes potential disruptions and stress points into account. When vetting potential vendors, always ask detailed questions that elicit evidence-backed responses. Ask vendors where they source their materials from, whether they have any history of experiencing disruptions in their supply chain and what kind of setbacks they have suffered as a result of COVID-19.

Investing in Your Core Business

In light of COVID-19, operators must invest in solutions that increase efficiency and improve the customer’s experience. This entails ensuring your customer safely enters and leaves your dispensary with a product they are satisfied with—the essence of any retail operation. Your operation should focus on enhancing customer flow as opposed to encouraging aimless roaming. Having an open-space, Apple store style dispensaries might have been a popular option before, but times have changed, and dispensaries must adapt.

Guided purchases offer not just more efficient transactions, but also serve to ensure that your waiting room isn’t backed up with an endless stream of unmanageable customers. Depending on your locally-mandated COVID-19 protocols, your dispensary will likely not be permitted to hold a high number of customers in the store, nor should it during this pandemic. Each customer service representative must be active as opposed to passive, directly asking customers what they are interested in, offering product or strain choices when customers seem unsure and answering questions as thoroughly as possible to avoid confusion and inherently delays. Be sure to emphasize the value of guided purchases to your employees and how they can promote the safety of both themselves and their customers.

Maintaining Urgency

The uncertainty of COVID-19 and its impact on the general economy has left many individuals “clocked out.” Simply put, many people feel that they should wait until things go back to normal before making any critical decisions. As essential businesses, cannabis operators cannot afford to make this same mistake. Now is not the time to sit back, reflect and wait for the vaccine. Instead, operators must work to precisely assess how COVID-19 impacted their business and execute a clear plan of action to address foreseeable problems.

Execution is far more important than perfection; you’ll need to make changes on a dime and avoid spending excessive hours obsessing over debating specific actions rather than taking them. It is far more essential to get tasks done versus ensuring they are perfect. If something is not working in your business, it must be readdressed or removed entirely from the protocol. It is far better to make necessary changes now amid the pandemic as opposed to reactively waiting and seeing what may come next following it.

Stay nimble by cutting out any factors that may be slowing down your company’s efficiency. Is your point-of-sale system causing issues? Can you use a better payment processing tool? Are any employees underperforming? Are there any internal policies that may be hindering your employees’ ability to work as optimally as possible? These are some of the many factors that must be considered to ensure your business stays agile and adaptable. Determine what is working against you and execute a plan of action to address. Do not wait and do not take shortcuts around regulations.

Understanding the Shift in Purchasing Behavior

Regardless of whether or not a vaccine for COVID-19 is completed anytime soon, operators must know that there is no “returning to normal.” People’s habits and behaviors have changed due to this virus, whereas slow browsing of items might have been preferable for some individuals before COVID-19; this is likely not the case today. Furthermore, research groups like Accenture have found that most customers expect their shopping habits to change permanently.

Source: Accenture COVID-19 Consumer Research, conducted April 2–6. Proportion of consumers that agree or significantly agree.

In the study mentioned above, shopping more consciously is one of the two top priorities for customers during this pandemic. According to Accenture, “[c]onsumers are more mindful of what they’re buying. They are striving to limit food waste, shop more cost consciously and buy more sustainable options. Brands will need to make this a key part of their offer (e.g., by exploring new business models).” Furthermore, customers are now more likely to shop locally; this is why community engagement would be especially important to ensure you develop transparency and trust between your brand and your customers. Understanding this shift in purchasing behavior will remain one of the more crucial tasks of any cannabis operator.

Expanding Sales Avenues

More and more customers are now relying on online and curbside purchases than ever before. Dispensaries must look to their current sales avenues and determine where key focuses should be made. Use your sales data to determine where customers are making their purchases the most, be it through third-party delivery services such as Eaze, standard home delivery, online ordering or curbside pickup. Focus on identifying friction and streamlining the user experience on all customer-facing platforms and services. Equally, consider which platform your customers are using the most to make purchases; are they making more online purchases, or do most still prefer direct shopping at the store? Remember that having more products doesn’t necessarily mean more revenue. You must also identify which products are performing well and which have low margins.

These considerations can help strengthen your highest performing platform while working to fix any more inferior performing platforms. As stated before, stay nimble; if something is not working out, cut it out from your business model, and move forward. Do not be afraid to cut poor-performing platforms to hone your focus on the successful ones. Since post-COVID-19 shopping behavior is likely to stay permanent, these changes may still be applicable following a slowdown or cessation of the virus.

Delighting Your Customers

Virus or not, customer satisfaction remains one of the most crucially defining points for the future of your business. Your customers must be safe and must be happy with their purchase. To ensure this outcome, you need to maintain adequate safety policies while equally promoting streamlined purchases. Although a limited number of individuals may be annoyed with over-the-top safety precautions, most customers will enjoy the heightened security that comes alongside these types of measures.

Contactless service, such as having customers scan their identification upon entry or encouraging more credit card versus cash transactions, can increase customer satisfaction, as they will feel a stronger sense of security when shopping at your dispensary. Focus on streamlining curbside pickup. Things such as requiring vehicle descriptions (e.g., license plate numbers, color, make) for curbside pickup purchases can go a long way in helping employees quickly identify customers.

Equally, be sure there is hand sanitizer available near the entrance of your dispensary. This adds a further sense of security for your shoppers. Delivery should be consistent; delays and setbacks must be minimal to win the confidence of your customers. Take the extra steps to ensure your dispensary is clean and products hygienic. All these factors work to increase customer satisfaction while maintaining their safety, and more importantly, impact the level of trust your customers have in association with your brand.

Scaling Operations Taking Advantage of Limited Competition in Emerging Markets

As stated before, several individuals—including existing and emerging cannabis businesses—are clocked out following COVID-19. This mindset is not only detrimental for operations but can also impact how you scale your business. New markets are coming online and will continue to do so as regulators are increasingly incentivized to replenish government coffers. Riverside County in California, for instance, is now allowing for capless licenses for all cannabis business types. However, what remains the key focus for regulators is expanding the number of delivery and distribution operators. In Massachusetts, delivery endorsements for dispensaries are available without a set deadline to social equity applicants and do not have a defined cap. In Illinois, the cap for transporters was equally removed, and each applicant who scores above 75% will receive a license.

These types of licenses are now more valuable than ever before for two reasons. The first reason is that regulators are keener to award delivery and transporter licenses than other types. Secondly, customers now prefer home delivery over shopping in stores due to COVID-19. With more people clocked out during these times, you have far more opportunities and far fewer competitors during application processes. Use this time to truly develop a strategy for expansion, as the chance might not come so quickly again.

Conclusion

As a final point, be sure to expand your online presence during this time. Although you may not have the capacity to reflect your company’s personality and value through quick in-store transactions, you can use social media to encourage product reviews, social interactions, and recommendations. Invest in marketing through social media platforms. Platforms such as TikTok have helped form communities of like-minded individuals. Use platforms such as that to highlight your company’s personality and values, avoid being “salesy” and focus more on being funny, entertaining and just alive. Character adds value to your business.

People want to laugh, to feel safe and they want to live. Create social interactions and immersion and always prioritize being honest and transparent with your customers. This final point stands as equally as important as the rest of the considerations highlighted throughout this article. Stay nimble, stay active and stay alert! Do not view the chaos behind this pandemic as a pit, and instead see it as a ladder. Track down opportunities, do not be afraid of change, and, more importantly, do not wait for an answer to COVID-19, be the answer.

Soapbox

3 Food Safety Precautions for Edibles

By Cindy Rice
No Comments

You’ve survived seasons of cannabis cultivations, bringing in quality plants in spite of mold, mites, drought and other challenges that had to be conquered. Extraction methods are sometimes challenging, but you are proud to have a cannabinoid extract that can be added into your own products for sale. Edibles are just waiting to be infused with the cannabinoids, for consumers demanding brownies, gummies, tinctures and almost any food and beverage imaginable. You’ve been through the fire, and now the rest is easy peasy, right?

Food processing and sanitation
Avoiding cross contamination should be a priority for edibles manufacturing

Actually, producing edibles may not be so seamless as you think. Just as in the rest of the food industry, food safety practices have to be considered when you’re producing edibles for public consumption, regardless of the THC, CBD, terpene or cannabinoid profile. Once you’ve acquired the extract (a “food grade ingredient”) containing the active compounds, there are three types of hazards that could still contribute to foodborne illness from your final product if you’re not careful- Biological, Chemical and Physical.

Biological hazards include pathogenic bacteria, viruses, mold, mildew (and the toxins that they can produce) that can come in ingredients naturally or contaminate foods from an outside source. Chemical hazards are often present in the kitchen environment, including detergents, floor cleaners, disinfectants and caustic chemicals, which can be harmful if ingested- they are not destroyed through cooking. Physical objects abound in food production facilities, including plastic bits, metal fragments from equipment, staples or twist ties from ingredient packages, and personal objects (e.g., buttons, jewelry, hair, nails.)

There are three main safety precautions that can help control these hazards during all the stages of food production, from receiving ingredients to packaging your final products:

1. Avoid Cross Contamination

  • Prevent biological, chemical or physical hazards from coming into contact with foods
  • Keep equipment, utensils and work surfaces clean and sanitized.
  • Prevent raw foods (as they usually carry bacteria) from coming into contact with “Ready-to-eat” foods (foods that will not be cooked further before consuming).
  • Keep chemicals away from food areas.

2. Personal Hygiene

  • Don’t work around foods if you’re sick with fever, vomiting or diarrhea. These could be signs of contagious illness and can contaminate foods or other staff, and contribute to an outbreak.
  • Do not handle ready-to-eat foods with bare hands, but use a barrier such as utensils, tissues or gloves when handling final products such as pastries or candies.
  • Wash hands and change gloves when soiled or contaminated.
  • Wear hair restraints and clean uniforms, and remove jewelry from hands and arms.

3. Time & Temperature control

  • Prevent bacterial growth in perishable foods such as eggs, dairy, meats, chicken (TCS “Time and Temperature Control for Safety” foods according to the FDA Model Food Code) by keeping cold foods cold and hot foods hot.
  • Refrigerate TCS foods at 41˚ F or below, and cook TCS foods to proper internal temperatures to kill bacteria to safe levels, per state regulations for retail food establishments.
  • If TCS foods have been exposed to room temperature for longer than four hours (Temperature Danger Zone 41˚ F – 135˚ F,) these foods should be discarded, as bacteria could have grown to dangerous levels during this time.

As cannabis companies strive for acceptance and legalization on a federal level, adopting these food safety practices and staff training is a major step in the right direction, on par with standards maintained by the rest of the retail food industry. The only difference is your one specially extracted cannabinoid ingredient that separates you from the rest of the crowd… with safe and healthy edibles for all.

Microbiology 101 Part Two

By Kathy Knutson, Ph.D.
No Comments

Microbiology 101 Part One introduced the reader to the science of microbiology and sources of microbes. In Part Two, we discuss the control of microorganisms in your products.

Part 2

The cannabis industry is probably more informed about patients and consumers of their products than the general food industry. In addition to routine illness and stress in the population, cannabis consumers are fighting cancer, HIV/AIDS and other immune disorders. Consumers who are already ill are immunocompromised. Transplant recipients purposely have their immune system suppressed in the process of a successful transplant. These consumers have pre-existing conditions where the immune system is weakened. If the immunocompromised consumer is exposed to viral or bacterial pathogens through cannabis products, the consumer is more likely to suffer from a viral infection or foodborne illness as a secondary illness to the primary illness. In the case of consumers with weakened immune systems, it could literally kill them.Bacteria, yeast, and mold are present in all environments.

The cannabis industry shoulders great responsibility in both the medical and adult use markets. In addition to avoiding chemical hazards and determining the potency of the product, the cannabis industry must manufacture products safe for consumption. There are three ways to control pathogens and ensure a safe product: prevent them from entering, kill them and control their growth.

Prevent microorganisms from getting in

Think about everything that is outdoors that will physically come in a door to your facility. Control the quality of ingredients, packaging, equipment lubricants, cleaning agents and sanitizers. Monitor employee hygiene. Next, you control everything within your walls: employees, materials, supplies, equipment and the environment. You control receiving, employee entrance, storage, manufacturing, packaging and distribution. At every step in the process, your job is to prevent the transfer of pathogens into the product from these sources.

Kill microorganisms

Colorized low-temperature electron micrograph of a cluster of E. coli bacteria.
Image courtesy of USDA ARS & Eric Erbe

The combination of raw materials to manufacture your product is likely to include naturally occurring pathogens. Traditional heat methods like roasting and baking will kill most pathogens. Remember, sterility is not the goal. The concern is that a manufacturer uses heat to achieve organoleptic qualities like color and texture, but the combination of time and temperature may not achieve safety. It is only with a validated process that safety is confirmed. If we model safety after what is required of food manufacturers by the Food and Drug Administration, validation of processes that control pathogens is required. In addition to traditional heat methods, non-thermal methods for control of pathogens includes irradiation and high pressure processing and are appropriate for highly priced goods, e.g. juice. Killing is achieved in the manufacturing environment and on processing equipment surfaces after cleaning and by sanitizing.

If you have done everything reasonable to stop microorganisms from getting in the product and you have a validated step to kill pathogens, you may still have spoilage microorganisms in the product. It is important that all pathogens have been eliminated. Examples of pathogens include Salmonella, pathogenic Escherichia coli, also called Shiga toxin-producing E. coli (STEC) and Listeria monocytogenes. These three common pathogens are easily destroyed by proper heat methods. Despite steps taken to kill pathogens, it is theoretically possible a pathogen is reintroduced after the kill step and before packaging is sealed at very low numbers in the product. Doctors do not know how many cells are required for a consumer to get ill, and the immunocompromised consumer is more susceptible to illness. Lab methods for the three pathogens mentioned are designed to detect very low cell numbers. Packaging and control of growth factors will stop pathogens from growing in the product, if present.

Control the growth of microorganisms

These growth factors will control the growth of pathogens, and you can use the factors to control spoilage microbes as well. To grow, microbes need the same things we do: a comfortable temperature, water, nutrients (food), oxygen, and a comfortable level of acid. In the lab, we want to find the pathogen, so we optimize these factors for growth. When you control growth in your product, one hurdle may be enough to stop growth; sometimes multiple hurdles are needed in combination. Bacteria, yeast, and mold are present in all environments. They are at the bottom of the ocean under pressure. They are in hot springs at the temperature of boiling water. The diversity is immense. Luckily, we can focus on the growth factors for human pathogens, like Salmonella, pathogenic E. coli, and Listeria monocytogenes.

The petri dishes show sterilization effects of negative air ionization on a chamber aerosolized with Salmonella enteritidis. The left sample is untreated; the right, treated. Photo courtesy of USDA ARS & Ken Hammond

Temperature. Human pathogens prefer to grow at the temperature of the human body. In manufacture, keep the time a product is in the range of 40oF to 140oF as short as possible. You control pathogens when your product is at very hot or very cold temperatures. Once the product cools after a kill step in manufacturing, it is critical to not reintroduce a pathogen from the environment or personnel. Clean equipment and packaging play key roles in preventing re-contamination of the product.

Water. At high temperatures as in baking or roasting, there is killing, but there is also the removal of water. In the drying process that is not at high temperature, water is removed to stop the growth of mold. This one hurdle is all that is needed. Even before mold is controlled, bacterial and yeast growth will stop. Many cannabis candies are safe, because water is not available for pathogen growth. Packaging is key to keep moisture out of the product.

Nutrients. In general, nutrients are going to be available for pathogen growth and cannot be controlled. In most products nutrients cannot be removed, however, recipes can be adjusted. Recipes for processed food add preservatives to control growth. In cannabis as in many plants, there may be natural compounds which act as preservatives.

Oxygen. With the great diversity of bacteria, there are bacteria that require the same oxygen we breathe, and mold only grows in oxygen. There are bacteria that only grow in the absence of oxygen, e.g. the bacteria responsible for botulism. And then there are the bacteria and yeast in between, growing with or without oxygen. Unfortunately, most human pathogens will grow with or without oxygen, but slowly without oxygen. The latter describes the growth of Salmonella, E. coli, and Listeria. While a package seals out air, the growth is very slow. Once a package is opened and the product is exposed to air, growth accelerates.

Acid. Fermented or acidified products have a higher level of acid than non-acid products; the acid acts as a natural preservative. The more acid, the more growth is inhibited. Generally, acid is a hurdle to growth, however and because of diversity, some bacteria prefer acid, like probiotics which are non-pathogenic. Some pathogens, like E. coli, have been found to grow in low acid foods, e.g. juice, even though the preference is for non-acidic environments.

Each facility is unique to its materials, people, equipment and product. A safe product is made by following Good Agricultural Practices for the cannabis, by following Good Manufacturing Practices and by suppressing pathogens by preventing them coming in, killing them and controlling their growth factors. Future articles will cover Hazard Analysis and Critical Control Points (HACCP) and food safety in more detail.

Microbiology 101 Part One

By Kathy Knutson, Ph.D.
No Comments

I have been studying microorganisms for over 35 years, and the elusive critters still fascinate me! Here in Microbiology 101, I write about the foundation of knowledge on which all microbiologists build. You may have a general interest in microbiology or have concerns in your operation. By understanding microbiology, you understand the diversity of microorganisms, their source, control of microorganisms and their importance.

Part 1

The term microbiology covers every living being we cannot see with the naked eye. The smallest microbe is a virus. Next in size are the bacteria, then yeast and mold cells, and the largest microbes are the protozoans. The tiny structure of a virus may be important in the plant pathology of cannabis, but will not grow in concentrates or infused products. A virus is not living, until it storms the gate of a living cell and overtakes the functions within the cell. Viruses are the number one cause of foodborne illness, with the number one virus called Norovirus. Think stomach flu. Think illness on cruise ships. Viruses are a food service problem and can be prevented by requiring employees to report sickness, have good personal hygiene including good hand washing, and, as appropriate, wear gloves. Following Good Manufacturing Practices (GMPs) is critical in preventing the transfer of viruses to a product where the consumer can be infected.

The petri dishes show sterilization effects of negative air ionization on a chamber aerosolized with Salmonella enteritidis. The left sample is untreated; the right, treated. Photo courtesy of USDA ARS & Ken Hammond

The largest microbial cell is the protozoan. They are of concern in natural water sources, but like viruses, will not grow in cannabis products. Control water quality through GMPs, and you control protozoans. Viruses and protozoans will not be further discussed here. Bacteria, yeast and mold are the focus of further discussion. As a food microbiologist, my typical application of this information is in the manufacturing of food. Because Microbiology 101 is a general article on microbiology, you can apply the information to growing, harvesting, drying, manufacture of infused products and dispensing.

It is not possible to have sterile products. Even the canning process of high temperature for an extended time allows the survival of resistant bacterial spores. Astronauts take dehydrated food into space, and soldiers receive MREs; both still contain microbes. Sterility is never the goal. So, what is normal? Even with the highest standards, it is normal to have microbes in your products. Your goal is to eliminate illness-causing microorganisms, i.e. pathogens. Along the way, you will decrease spoilage microbes too, making a product with higher quality.

Petri dish containing the fungus Aspergillus flavus. It produces carcinogenic aflatoxins, which can contaminate foods and cause an invasive fungal disease.
Photo courtesy of USDA ARS & Peggy Greb.

Yeast and mold were discussed on CIJ in a previous article, Total Yeast & Mold Count: What Cultivators & Business Owners Need to Know. Fuzzy mold seen on the top of food left in the refrigerator too long is a quality issue, not a safety issue. Mold growth is a problem on damaged cannabis plants or cuttings and may produce mycotoxin, a toxic chemical hazard. Following Good Agricultural Practices (GAPs) will control mold growth. Once the plant is properly dried, mold will not grow and produce toxin. Proper growing, handling and drying prevents mycotoxins. Like mold, growth of yeast is a quality issue, not a safety issue. As yeast grow, they produce acid, alcohol and carbon dioxide gas. While these fermentation products are unwanted, they are not injurious. I am aware that some states require cannabis-infused products to be alcohol-free, but that is not a safety issue discussed here.

What are the sources of microorganisms?

People. Employees who harvest cannabis may transfer microorganisms to the plant. Later, employees may be the source of microbes at the steps of trimming, drying, transfer or portioning, extract processing, infused product manufacture and packaging.

Ingredients, Supplies and Materials. Anything you purchase may be a source of microorganisms. Procure quality merchandise. Remember the saying, “you get what you pay for.”

Environment. Starting with the outdoors, microbes come from wind, soil, pests, bird droppings and water. When plants are harvested outdoors or indoors, microbes come from the tools and bins. Maintain clean growing and harvesting tools in good working condition to minimize contamination with microbes. For any processing, microbes come from air currents, use of water, and all surfaces in the processing environment from dripping overhead pipes to floor drains and everything in between.

In Part 2 I will continue to discuss the diversity of microorganisms, and future articles will cover Hazard Analysis and Critical Control Points (HACCP) and food safety in more detail. What concerns do you have at each step of operations? Are you confident in your employees and their handling of the product? As each state works to ensure public health, cannabis-infused products will receive the same, if not more, scrutiny as non-cannabis food and beverages. With an understanding and control of pathogens, you can focus on providing your customers with your highest quality product.