Tag Archives: HACCP

FSC logo

Food Safety Consortium To Address Cannabis Safety, Edibles Manufacturing

By Aaron G. Biros
1 Comment
FSC logo

The 6thAnnual Food Safety Consortium Conference & Expo will feature an entire track dedicated to cannabis. As announced in May of this year, the Cannabis Quality series will feature presentations by subject matter experts in the areas of regulations, edibles manufacturing, cannabis safety & quality as well as laboratory testing.FSC logo

The Food Safety Consortium is hosted by our sister publication, Food Safety Tech, and the Cannabis Quality series will be co-hosted by Cannabis Industry Journal. A number of cannabis-focused organizations will participate in the series of talks, which are designed to help attendees better understand the cannabis edibles market, regulations surrounding the industry and standards for manufacturers. Some highlights include the following:

  • Ben Gelt, board chairman at the Cannabis Certification Council (CCC), will moderate a panel where leaders in the edibles market discuss supply chain, production and other difficulties in manufacturing infused products. Panelists include Leslie Siu, Founder/CEO Mother & Clone, Jenna Rice, Director of Operations at Gron and Kristen Hill, MIP Director, Native Roots Dispensary, among others. “The Cannabis Certification Council believes consumer education campaigns like #Whatsinmyweed are critical to drive standards and transparency like we see in food,” says Gelt. “What better place to discuss the food safety challenges the cannabis industry faces than the Food Safety Consortium”
  • Radojka Barycki, CEO of Nova Compliance, will discuss the role of food safety in the cannabis industry and identify some biological and chemical hazards in cannabis product testing in her talk, “Cannabis: A Compliance Revolution.”
  • Larry Mishkin, counsel to Hoban Law Group and partner at the law firm, Silver & Mishkin, which serves cannabis businesses in Illinois, will provide insights during the conference.
  • Cameron Prince, vice president of regulatory affairs at The Acheson Group, will help attendees better understand key market indicators and current trends in edibles manufacturing during his talk on November 15. “With the current trend of legalizing cannabis edibles, medicinal and recreational suppliers alike are looking to quickly enter the edibles market,” says Prince. “Understanding the nuances of moving to food production relative to food safety, along with navigating the food industry’s regulatory environment will be critical to the success of these companies.”
  • Tim Lombardo and Marielle Weintraub, both from Covance Food Solutions, will identify common pathogens and areas where cross contamination can occur for edibles manufacturers.

The Food Safety Consortium will be held November 13–15 in Schaumburg, Illinois (just outside of Chicago). To see the full list of presenters and register for the conference, go the Food Safety Consortium’s website.

Schebella, Celia photo

Designing the Perfect Cannabis Edible in California

By Celia Schebella
1 Comment
Schebella, Celia photo

Are you a product designer in the edible cannabis market? Well, you live at the intersection of the food and pharmaceutical industries and need to know both worlds, utilizing best-practice product development principles, regardless of which industry you are working in. In the cannabis industry, this means knowing your chemistry principles, food science, food safety, Good Manufacturing Practices (GMPs, applicable to the food industry) along with the more intense records and documentation requirements of the pharmaceutical industry.

California is the most recent state to implement legal recreational cannabis. It is estimated to deliver $7.7B in sales by 2021, including a reduction of medical use cannabis and an uptake of adult recreational use. How often do you live at the inception of such a potentially enormous market? Not often, so product developers, here is an opportunity. However, with that opportunity comes the responsibility. A recent emergency legislation adopted by the California Cannabis Safety Branch states:

Operational Requirements Licensees must have written procedures for inventory control, quality control, transportation, security and cannabis waste disposal. Descriptions of these procedures or Standard Operating Procedures (SOPs) must be submitted with the annual license application. Cannabis waste cannot be sold, must be placed in a secured area and be disposed of according to applicable waste management laws. Good manufacturing practices must be followed to ensure production occurs in a sanitary and hazard-free environment, cannabis products are contaminant free and THC levels are consistent throughout the product and within required limits. Extractions using CO2 or a volatile solvent must be conducted using a closed-loop system, certified by a California-licensed engineer. Volatile, hydrocarbon-based solvents must have at least 99% purity. Finally, volatile solvent, CO2 and ethanol extractions must be certified by the local fire code official.

Part of this emergency legislation for all California cannabis product manufacturers is the newly published GMP requirements, which appear to be a combination of food, supplements and HACCP requirements. Helpful resources to learn more about this new California emergency legislation impacting cannabis product manufacturers can be found at the California Manufactured Cannabis Safety Branch with the details of the emergency cannabis regulations.

Once developers have decided on a product, research and education to develop a good understanding of the regulatory environment is a must. For example, in order to develop compliant cannabis edibles, compliance with state, and in some cases local regulations, for food and cannabis must be met. Proactive compliance is a big part of designing a successful product in the most efficient manner.The attention to detail here will create a safe and satisfying experience for consumers as they receive a consistent product every time.

As a product developer you must first know the incoming cannabis plant characteristics to determine what type of cannabinoids they contain to determine what types you wish to source. This requires a strong and well documented  supplier program that can identify reliable suppliers of high purity and consistent cannabis raw materials, the same principles that are typically required of food manufacturers. When looking for examples of credible ingredient supplier programs, looking at those used by the food industry is a good start. Make sure supplier management programs apply to all the raw materials and direct-contact packaging that you plan to use in your new product.

Once reliable sources of raw material have been secured, the next challenge is to conduct periodic tests of cannaboids levels found in your incoming cannabis. With this information, you need to adjust blending amounts to reflect the correct cannaboid dose in the finished ready-to-eat (RTE) product. Like any other medicinal product, the active ingredient dosage will directly impact the effect on the consumer, thus it is important that you, the manufacturer, are completely aware of the exact cannaboid levels in your incoming ingredients, your blending amounts and your final product levels. This will require a robust either in-plant or commercial laboratory testing program. There is a great deal of technology and chemical analyses available to help dose the product accurately. This must also include robust testing and verification steps. If a consumer of your product were to over-consume from “normal” consumption rates of your cannabis-based food product, the liability, both financial, civil, ethical and criminal would fall on your company. The attention to detail here will create a safe and satisfying experience for consumers as they receive a consistent product every time.

design your products with commercial manufacturing viability in mindOnce regulatory responsibilities for manufacturing and marketing a cannabis-based food product have been met, so that you may sell a compliant and consistent product, it is time to add some creative juices and make the product interesting and enjoyable to consumers. With cannabis edibles, for example, explore what sort of food is appealing to consumers. Consider when, where and with whom your potential customers would be eating that food. Evaluate the best packaging design and size to suit the occasion. Ensure the packaging is child resistant yet practical for adult consumers. And above all manufacture a food that is delicious. Curiosity will attract your customers for the first time but quality and consistency will keep them coming back.

Product developers are usually fantastic at developing great lab scale products, but part of a developer’s job is to ensure that the design and manufacturing process is scalable for consistent and compliant commercial manufacturing. So design your products with commercial manufacturing viability in mind. Try to minimize the number of ingredients whilst still making a consumer-desirable product. Finally, rationalize your ingredients across your portfolio to avoid overcrowding the warehouse and risking expired ingredients.

If successful, your consumers will desire your product, your compliance team will be satisfied, your manufacturing partners will be thankful, the State of California will determine that you are fully compliant and your sales team’s job will have great business and professional success. In the end, you will have developed and launched a successful legacy product!

HACCP

Hazard Analysis and Critical Control Points (HACCP) for the Cannabis Industry: Part 3

By Kathy Knutson, Ph.D.
2 Comments
HACCP

Parts One and Two in this series have defined Good Manufacturing Practices, introduced Hazard Analysis and Critical Control Points (HACCP) and explained the first HACCP step of hazard analysis. A food safety team will typically work from a flow diagram to identify biological, chemical or physical hazards at each step of processing and packaging. Once the hazard is identified, the severity and probability are debated. Hazards with severe consequences or high probability are carried through the HACCP plan as Critical Control Points (CCPs).

Critical Control Points definedHACCP is a do-it-yourself project.

Where exactly will the hazard be controlled? CCPs are embedded within certain steps in processing and packaging where the parameters, like temperature, must be met to ensure food safety. Failure at a CCP is called a deviation from the HACCP plan. The food safety team identifies where manufacturing problems could occur that would result in a product that could cause illness or injury. Not every step is a CCP! For example, I worked with a client that had several locations for filters of a liquid stream. The filters removed food particles, suspended particulates and potentially metal. We went through a virtual exercise of removing each filter one-by-one and talking through the result on controlling the potential hazard of metal. We agreed that failure of the final filter was the CCP for catching metal, but not the other filters. It was not necessary to label each filter as a CCP, because every CCP requires monitoring and verification.

Identification of a CCP starts more documentation, documentation, documentation.

Do you wish you had more reports to write, more forms to fill out, more data to review? No. Nobody wants more work. When a CCP is identified, there is more work to do. This just makes sense. If a CCP is controlling a hazard, you want to know that the control is working. Before I launch into monitoring, I digress to validation.

CCP validationThis is where someone says, “We have always done it this way, and we have never had a problem.”

You want to know if a critical step will actually control a hazard. Will the mesh of a filter trap metal? Will the baking temperature kill pathogens? Will the level of acid stop the growth of pathogens? The US had a major peanut butter recall by Peanut Corporation of America. There were 714 Salmonella cases (individuals) across 46 states from consumption of the contaminated peanut butter. Imagine raw peanuts going into a roaster, coming out as roasted peanuts and being ground into butter. Despite the quality parameters of the peanut butter being acceptable for color and flavor, the roasting process was not validated, and Salmonella survived. Baking of pies, pasteurization of juice and canning all rely on validated cook processes for time and temperature. Validation is the scientific, technical information proving the CCP will control the hazard. Without validation, your final product may be hazardous, just like the peanut butter. This is where someone says, “We have always done it this way, and we have never had a problem.” Maybe, but you still must prove safety with validation.

The hazard analysis drives your decisions.

Starting with the identification of a hazard that requires a CCP, a company will focus on the control of the hazard. A CCP may have one or more than one parameter for control. Parameters include time, temperature, belt speed, air flow, bed depth, product flow, concentration and pH. That was not an exhaustive list, and your company may have other critical parameters. HACCP is a do-it-yourself project. Every facility is unique to its employees, equipment, ingredients and final product. The food safety team must digest all the variables related to food safety and write a HACCP plan that will control all the hazards and make a safe product.

Meeting critical limits at CCPs ensures food safety

The HACCP plan details the parameters and values required for food safety at each CCP.The HACCP plan identifies the minimum or maximum value for each parameter required for food safety. A value is just a number. Imagine a dreadful day; there are problems in production. Maybe equipment stalls and product sits. Maybe the electricity flickers and oven temperature drops. Maybe a culture in fermentation isn’t active. Poop happens. What are the values that are absolutely required for the product to be safe? They are often called critical limits. This is the difference between destroying product and selling product. The HACCP plan details the parameters and values required for food safety at each CCP. In production, the operating limits may be different based on quality characteristics or equipment performance, but the product will be safe when critical limits are met. How do you know critical limits are met?

CCPs must be monitored

Every CCP is monitored. Common tools for monitoring are thermometers, timers, flow rate meters, pH probes, and measuring of concentration. Most quality managers want production line monitoring to be automated and continuous. If samples are taken and measured at some frequency, technicians must be trained on the sampling technique, frequency, procedure for measurement and recording of data. The values from monitoring will be compared to critical limits. If the value does not reach the critical limit, the process is out of control and food safety may be compromised. The line operator or technician should be trained to know if the line can be stopped and how to segregate product under question. Depending on the hazard, the product will be evaluated for safety, rerun, released or disposed. When the process is out of control, it is called a deviation from the HACCP plan.

A deviation initiates corrective action and documentation associated with the deviation. You can google examples of corrective action forms; there is no one form required. Basically, the line operator, technician or supervisor starts the paperwork by recording everything about the deviation, evaluation of the product, fate of the product, root cause investigation, and what was done to ensure the problem will not happen again. A supervisor or manager reviews and signs off on the corrective action. The corrective action form and associated documentation should be signed off before the product is released. Sign off is an example of verification. Verification will be discussed in more detail in a future article.

My thoughts on GMPs and HACCP were shared in a webinar on May 2nd hosted by CIJ and NEHA. Please comment on this blog post below. I love feedback!

HACCP

Hazard Analysis and Critical Control Points (HACCP) for the Cannabis Industry: Part 2

By Kathy Knutson, Ph.D.
2 Comments
HACCP

HACCP is a food safety program developed in the 1960s for the food manufacturing industry, mandated for meat, seafood and juice and adopted by foodservice for the safe serving of meals at restaurants. With state requirements for the safe production of cannabis-infused products, namely edibles, facilities may be inspected against HACCP principles. The cannabis industry and state inspectors recognize the need for safe edible manufacture. Lessons can be learned from the food industry, which has advanced beyond HACCP plans to food safety plans, starting with procurement and including the shipment of finished product to customers.

In my work with the food industry, I write HACCP and food safety plans and deliver training on food safety. In Part 1 of this series, I wrote about the identification of hazards, which is the first step in HACCP plan development. Before we continue with the next HACCP step, I will discuss Good Manufacturing Practices (GMPs). GMPs are the foundation on which HACCP is built. In other words, without GMPs in place, the facility will not have a successful HACCP program. GMPs are required in the food, dietary supplement and pharmaceutical industries, all under the enforcement of the federal Food and Drug Administration (FDA). Without federal regulation for cannabis edible manufacture, there may not be state-mandated requirements for GMPs. Let me warn you that any food safety program will not succeed without proper control of GMPs.HACCP

GMPs cover all of your programs and procedures to support food safety without having a direct, instant control. For example, when brownies are baked as edibles, food safety is controlled by the time and temperature of baking. A written recipe and baking procedure are followed for the edible. The time and temperature can be recorded to provide documentation of proper baking. In the food industry, this is called a process preventative control, which is critical to food safety and is part of a HACCP plan. Failure of proper time and temperature of baking not only leads to an unacceptable product in terms of quality, but results in an unsafe product that should not be sold.

Back to GMPs. Now think of everything that was done up to the steps of mixing and baking. Let’s start with personnel. Facilities for edibles have hiring practices. Once an employee is hired, the employee is trained, and training will include food safety procedures. When working at the job after training, the employee measuring ingredients will demonstrate proper grooming and hand washing. Clean aprons, hairnets, beard nets and gloves will be provided by the facility and worn by the employee. The same goes for the employee that bakes and the employee that packages the edible. One category of GMPs is Personnel.

Edibles facilities are not foodservice; they are manufacturing. A second GMP category is cleaning and sanitizing. Food safety is controlled through proper cleaning and sanitizing of food contact surfaces (FCS). The edible facility will have in place the frequency and methods for cleaning all parts of the facility- outside, offices, restrooms, break room and others. GMPs cover the general cleaning procedures and procedures for cleaning receiving, storage; what we would consider processing to include weighing, process steps and packaging; finished product storage and shipping. Management of the facility decides the methods and frequency of cleaning and sanitizing with greater care given to processing. Without proper cleaning and sanitizing, a facility cannot achieve food safety.

I could go on and on about GMPs. Other GMPs include water safety, integrity of the buildings, pest control program, procurement, sewage disposal and waste disposal. Let’s transition back to HACCP. In Part 1 of this series, I explained identification of hazards. Hazards are one of three types: biological, chemical and physical.

At this point, I am not surprised if you are overwhelmed. After reading Part 1 of this series, did you form a food safety team? At each edibles facility, there should be at least one employee who is trained externally in food safety to the standard that foodservice meets. Classes are offered locally and frequently. When the facility is ready, the next step of training is a HACCP workshop for the food industry, not foodservice. Edibles facilities are not foodservice; they are manufacturing. Many colleges and associations provide HACCP training. Finally, at the least, one employee should attend a workshop for Preventive Controls Qualified Individual.

To institute proper GMPs, go to ConnectFood.com for a GMP checklist. Did you draw up a flow diagram after reading Part 1? With a flow diagram that starts at Receiving and ends at Shipping, the software at ConnectFood.com takes you through the writing steps of a HACCP or food safety plan. There are many resources out there for GMPs, so it can get overwhelming. ConnectFood.com is my favorite resource.

The next step in HACCP development after identification of hazards is to identify the exact step where the hazard will be controlled. Strictly speaking, HACCP only covers process preventive controls, which typically start with a weigh step and end with a packaging step. A facility may also have a step where temperature must be controlled for food safety, e.g. cooling. In HACCP, there are commonly two process preventive controls:

  • Biological hazard of Salmonella and Escherichia coli: the heat step
  • Physical hazard of metal: metal detector

Strictly speaking, HACCP does not include cleaning, sanitizing and supplier approval for procurement of ingredients and packaging. I hope you see that HACCP is not enough. There have been hundreds of recalls and outbreaks due to problems in non-processing steps. The FDA requires food manufactures to go beyond HACCP and follow a written food safety plan, which includes hazards controlled at these steps:

  • Biological hazard of Listeria monocytogenes: cleaning and sanitizing of the processing environment and equipment
  • Physical hazards coming in with ingredients: supplier approval
  • Physical hazard of glass and hard plastic: Here I am thinking of glass breaking or plastic pieces flying off buckets. This is an internal hazard and is controlled by following written procedures. The written document is a Standard Operating Procedure (SOP).
  • Chemical hazard of pesticides: supplier approval
  • Chemical hazard of mycotoxins: supplier approval
  • Chemical hazard of allergens: supplier approval, label check at Receiving and product labeling step

Does a cannabis edible facility honestly not care or not control for pesticides in ingredients because this is not part of HACCP? No. There are two ways for procurement of ingredients in which pesticides are controlled. Either the cannabis cultivation is controlled as part of the samebusiness or the facility works with a supplier to confirm the ingredient meets pesticide tolerances. Strictly speaking, this control is not part of HACCP. For this and many other reasons, HACCP is a good place to start the control of food safety when built on a solid foundation of GMPs. In the same way the food industry is required to go beyond HACCP with a food safety plan, the cannabis industry must go beyond HACCP.

My thoughts will be shared in a webinar on May 2nd hosted by CIJ and NEHA. I encourage you to listen in to continue this discussion.Please comment on this blog post below. I love feedback!

HACCP

Hazard Analysis and Critical Control Points (HACCP) for the Cannabis Industry: Part 1

By Kathy Knutson, Ph.D.
No Comments
HACCP

Hazard Analysis and Critical Control Points (HACCP) Defined

Farm-to-fork is a concept to describe the control of food safety starting in the fields of a farm and ending with deliciousness in my mouth. The more that is optimized at every step, the more food safety and quality are realized. Farm-to-fork is not a concept reserved for foodies or “eat local” food campaigns and applies to all scales of food manufacture. HACCP is like putting the last piece of a huge puzzle in the middle and seeing the whole picture develop. HACCP is a program to control food safety at the step of food processing. In states where cannabis is legal, the state department of public health or state department of agriculture may require food manufacturers to have a HACCP plan. The HACCP plan is a written document identifying food safety hazards and how those hazards are controlled by the manufacturer. While there are many resources available for writing a HACCP plan, like solving that puzzle, it is a do-it-yourself project. You can’t use someone else’s “puzzle,” and you can’t put the box on a shelf and say you have a “puzzle.”

HACCP is pronounced “ha” as in “hat” plus “sip.”

(Say it aloud.)

3-2-1 We have liftoff.

The history of HACCP starts not with Adam eating in the garden of Eden but with the development of manned missions to the moon, the race to space in the 1950s. Sorry to be gross, but imagine an astronaut with vomiting and diarrhea as a result of foodborne illness. In the 1950s, the food industry relied on finished product testing to determine safety. Testing is destructive of product, and there is no amount of finished product testing that will determine food is safe enough for astronauts. Instead, the food industry built safety into the process. Temperature was monitored and recorded. Acidity measured by pH is an easy test. Rather than waiting to test the finished product in its sealed package, the food industry writes specifications for ingredients, ensures equipment is clean and sanitized, and monitors processing and packaging. HACCP was born first for astronauts and now for everyone.HACCP

HACCP is not the only food safety program.

If you are just learning about HACCP, it is a great place to start! There is a big world of food safety programs. HACCP is required by the United States Department of Agriculture for meat processors. The Food and Drug Administration (FDA) requires HACCP for seafood processing and 100% juice manufacture. For all foods beyond meat, seafood and juice, FDA has the Food Safety Modernization Act (FSMA) to enforce food safety. FSMA was signed in 2011 and became enforceable for companies with more than 500 employees in September of 2016; all food companies are under enforcement in September 2018. FSMA requires all food companies with an annual revenue greater than $1 million to follow a written food safety plan. Both FDA inspectors and industry professionals are working to meet the requirements of FSMA. There are also national and international guidelines for food safety with elements of HACCP which do not carry the letter of law.

The first step in HACCP is a hazard analysis.

Traditionally HACCP has focused on processing and packaging. Your organization may call that manufacturing or operations. In a large facility there is metering of ingredients by weight or volume and mixing. A recipe or batch sheet is followed. Most, but not all, products have a kill step where high heat is applied through roasting, baking, frying or canning. The food is sealed in packaging, labeled, boxed and heads out for distribution. For your hazard analysis, you identify the potential hazards that could cause injury or illness, if not controlled during processing. Think about all the potential hazards:

  • Biological: What pathogens are you killing in the kill step? What pathogens could get in to the product before packaging is sealed?
  • Chemical: Pesticides, industrial chemicals, mycotoxins and allergens are concerns.
  • Physical: Evaluate the potential for choking hazards and glass, wood, hard plastic and metal.

The hazards analysis drives everything you do for food safety.

I cannot emphasize too much the importance of the hazard analysis. Every food safety decision is grounded in the hazard analysis. Procedures will be developed and capital will be purchased based on the hazard analysis and control of food safety in your product. There is no one form for the completion of a hazard analysis.

HACCP risk matrix
A risk severity matrix. Many HACCP training programs have these.

So where do you start? Create a flow diagram naming all the steps in processing and packaging. If your flow diagram starts with Receiving of ingredients, then the next step is Storage of ingredients; include packaging with Receiving and Storage. From Storage, ingredients and packaging are gathered for a batch. Draw out the processing steps in order and through to Packaging. After Packaging, there is finished product Storage and Distribution. Remember HACCP focuses on the processing and packaging steps. It is not necessary to detail each step on the flow diagram, just name the step, e.g. Mixing, Filling, Baking, etc. Other supporting documents have the details of each step.

For every step on the flow diagram, identify hazards.

Transfer the name of the step to the hazard analysis form of your choice. Focus on one step at a time. Identify biological, chemical and physical hazards, if any, at that step. The next part is tricky. For each hazard identified, determine the probability of the hazard occurring and severity of illness or injury. Some hazards are easy like allergens. If you have an ingredient that contains an allergen, the probability is high. Because people can die from ingestion of allergens when allergic, the severity is high. Allergens are a hazard you must control. What about pesticides? What is the probability and severity? I can hear you say that you are going to control pesticides through your purchasing agreements. Great! Pesticides are still a hazard to identify in your hazard analysis. What you do about the hazard is up to you.

Steven Burton

Top 4 Food Safety Hazards for the Cannabis Industry

By Steven Burton
12 Comments
Steven Burton

As many US States and Canadian provinces approach legalization of cannabis, the question of regulatory oversight has become a pressing issue. While public awareness is mainly focused on issues like age restrictions and impaired driving, there is another practical question to consider: should cannabis be treated as a drug or a food product when it comes to safety? In the US, FDA governs both food and drugs, but in Canada, drugs are regulated by Health Canada while food products are regulated under the CFIA.There are many food safety hazards associated with cannabis production and distribution that could put the public at risk, but are not yet adequately controlled

Of course, there are common issues like dosage and potency that pharmaceutical companies typically worry about as the industry is moving to classifying its products in terms of percentage of chemical composition (THC, CBD, etc. in a strain), much as we categorize alcohol products by the percentage of alcohol. However, with the exception of topical creams and ointments, many cannabis products are actually food products. Even the herb itself can be brewed into teas, added to baked goods or made into cannabis-infused butters, oils, capsules and tinctures.

FDAlogoAs more people gain access to and ingest cannabis products, it’s only a matter of time before food safety becomes a primary concern for producers and regulators. So when it comes to food safety, what do growers, manufacturers and distributors need to consider? The fact is, it’s not that different from other food products. There are many food safety hazards associated with cannabis production and distribution that could put the public at risk, but are not yet adequately controlled. Continue reading below for the top four safety hazards for the cannabis industry and learn how to receive free HACCP plans to help control these hazards.

Aflatoxins on Cannabis Bud

Just like any other agricultural product, improper growing conditions, handling and storage can result in mold growth, which produce aflatoxins that can cause liver cancer and other serious health problems. During storage, the danger is humidity; humidity must be monitored in storage rooms twice a day and the meter must be calibrated every month. During transportation, it is important to monitor and record temperatures in trucks. Trucks should also be cleaned weekly or as required. Products received at a cannabis facilities should be tested upon receiving and contaminated products must always be rejected, segregated and disposed of safely.

Petri dish containing the fungus Aspergillus flavus. It produces carcinogenic aflatoxins, which can contaminate certain foods and cause aspergillosis, an invasive fungal disease.
Photo courtesy of USDA ARS & Peggy Greb.

Chemical Residues on Cannabis Plants

Chemical residues can be introduced at several points during the production and storage process. During growing, every facility should follow instructions for applying fertilizers and pesticides to crops. This includes waiting for a sufficient amount of time before harvesting. When fertilizer is being applied, signs must be posted. After cannabis products have been harvested, chemical controls must be in place. All chemicals should be labelled and kept in contained chemical storage when not in use to prevent contamination. Only food-grade chemicals (e.g. cleaners, sanitizers) should be used during curing, drying, trimming and storage.

Without a comprehensive food safety program, problems will inevitably arise.There is also a risk of excessive concentration of chemicals in the washing tank. As such, chemical concentrations must be monitored for. In general, water (obviously essential for the growing process) also carries risks of pathogenic bacteria like staphylococcus aureus or salmonella. For this reason, city water (which is closely controlled in most municipalities) should be used with an annual report and review. Facilities that use well water must test frequently and water samples must be tested every three months regardless.

Pathogenic Contamination from Pest Infestations

Insects, rodents and other pests spread disease. In order to prevent infestations, a pest control program must be implemented, with traps checked monthly by a qualified contractor and verified by a designated employee. It is also necessary to have a building procedure (particularly during drying), which includes a monthly inspection, with no holes or gaps allowed. No product should leave the facility uncovered to prevent fecal matter and other hazards from coming into contact with the product. Contamination can also occur during storage on pallets, so pallets must be inspected for punctures in packaging material.

Furthermore, even the best controlled facility can fall victim to the shortcomings of their suppliers. Procedures must be in place to ensure that suppliers are complying with pest and building control procedures, among others. Certifications should be acquired and tracked upon renewal.

Pathogenic Contamination Due to Improper Employee Handling

Employee training is key for any food facility. When employees are handling products, the risk of cross-contamination is highest. Facilities must have GMP and personnel hygiene policies in place, with training conducted upon hiring and refreshed monthly. Employees must be encouraged to stay home when sick and instructed to wear proper attire (gloves, hair nets, etc.), while glass, jewelry and outside food must not be allowed inside the facility. Tools used during harvesting and other stages may also carry microorganisms if standard cleaning procedures are not in place and implemented correctly by employees.

As the cannabis industry grows, and regulatory bodies like the FDA and CFIA look to protect public safety, we expect that more attention will be paid to other food safety issues like packaging safety (of inks and labels), allergen control and others. In the production of extracts, for example, non-food safe solvents could be used or extracts can be mixed with ingredients that have expiration dates, like coconut oil. There is one area in which the cannabis industry may lead the way, however. More and more often, risks of food terrorism, fraud and intentional adulteration are gripping the food industry as the global food chain becomes increasingly complex. It’s safe to say that security at cannabis facilities is probably unparalleled.

All of this shows that cannabis products, especially edibles (and that includes capsules and tinctures), should be treated the same as other food products simply because they have the same kinds of hazards. Without a comprehensive food safety program (that includes a plan, procedures, training, monitoring and verification), problems will inevitably arise.

Microbiology 101 Part One

By Kathy Knutson, Ph.D.
No Comments

I have been studying microorganisms for over 35 years, and the elusive critters still fascinate me! Here in Microbiology 101, I write about the foundation of knowledge on which all microbiologists build. You may have a general interest in microbiology or have concerns in your operation. By understanding microbiology, you understand the diversity of microorganisms, their source, control of microorganisms and their importance.

Part 1

The term microbiology covers every living being we cannot see with the naked eye. The smallest microbe is a virus. Next in size are the bacteria, then yeast and mold cells, and the largest microbes are the protozoans. The tiny structure of a virus may be important in the plant pathology of cannabis, but will not grow in concentrates or infused products. A virus is not living, until it storms the gate of a living cell and overtakes the functions within the cell. Viruses are the number one cause of foodborne illness, with the number one virus called Norovirus. Think stomach flu. Think illness on cruise ships. Viruses are a food service problem and can be prevented by requiring employees to report sickness, have good personal hygiene including good hand washing, and, as appropriate, wear gloves. Following Good Manufacturing Practices (GMPs) is critical in preventing the transfer of viruses to a product where the consumer can be infected.

The petri dishes show sterilization effects of negative air ionization on a chamber aerosolized with Salmonella enteritidis. The left sample is untreated; the right, treated. Photo courtesy of USDA ARS & Ken Hammond

The largest microbial cell is the protozoan. They are of concern in natural water sources, but like viruses, will not grow in cannabis products. Control water quality through GMPs, and you control protozoans. Viruses and protozoans will not be further discussed here. Bacteria, yeast and mold are the focus of further discussion. As a food microbiologist, my typical application of this information is in the manufacturing of food. Because Microbiology 101 is a general article on microbiology, you can apply the information to growing, harvesting, drying, manufacture of infused products and dispensing.

It is not possible to have sterile products. Even the canning process of high temperature for an extended time allows the survival of resistant bacterial spores. Astronauts take dehydrated food into space, and soldiers receive MREs; both still contain microbes. Sterility is never the goal. So, what is normal? Even with the highest standards, it is normal to have microbes in your products. Your goal is to eliminate illness-causing microorganisms, i.e. pathogens. Along the way, you will decrease spoilage microbes too, making a product with higher quality.

Petri dish containing the fungus Aspergillus flavus. It produces carcinogenic aflatoxins, which can contaminate foods and cause an invasive fungal disease.
Photo courtesy of USDA ARS & Peggy Greb.

Yeast and mold were discussed on CIJ in a previous article, Total Yeast & Mold Count: What Cultivators & Business Owners Need to Know. Fuzzy mold seen on the top of food left in the refrigerator too long is a quality issue, not a safety issue. Mold growth is a problem on damaged cannabis plants or cuttings and may produce mycotoxin, a toxic chemical hazard. Following Good Agricultural Practices (GAPs) will control mold growth. Once the plant is properly dried, mold will not grow and produce toxin. Proper growing, handling and drying prevents mycotoxins. Like mold, growth of yeast is a quality issue, not a safety issue. As yeast grow, they produce acid, alcohol and carbon dioxide gas. While these fermentation products are unwanted, they are not injurious. I am aware that some states require cannabis-infused products to be alcohol-free, but that is not a safety issue discussed here.

What are the sources of microorganisms?

People. Employees who harvest cannabis may transfer microorganisms to the plant. Later, employees may be the source of microbes at the steps of trimming, drying, transfer or portioning, extract processing, infused product manufacture and packaging.

Ingredients, Supplies and Materials. Anything you purchase may be a source of microorganisms. Procure quality merchandise. Remember the saying, “you get what you pay for.”

Environment. Starting with the outdoors, microbes come from wind, soil, pests, bird droppings and water. When plants are harvested outdoors or indoors, microbes come from the tools and bins. Maintain clean growing and harvesting tools in good working condition to minimize contamination with microbes. For any processing, microbes come from air currents, use of water, and all surfaces in the processing environment from dripping overhead pipes to floor drains and everything in between.

In Part 2 I will continue to discuss the diversity of microorganisms, and future articles will cover Hazard Analysis and Critical Control Points (HACCP) and food safety in more detail. What concerns do you have at each step of operations? Are you confident in your employees and their handling of the product? As each state works to ensure public health, cannabis-infused products will receive the same, if not more, scrutiny as non-cannabis food and beverages. With an understanding and control of pathogens, you can focus on providing your customers with your highest quality product.

extraction equipment

Implementing a HACCP Plan in Cannabis Processing

By Aaron G. Biros
No Comments
extraction equipment

Hazard analysis and critical control points (HACCP) is a robust management system that identifies and addresses any risk to safety throughout production. Originally designed for food safety through the entire supply chain, the risk assessment scheme can ensure extra steps are taken to prevent contamination.

The FDA as well as the Food Safety and Inspection Service currently require HACCP plans in a variety of food markets, including high-risk foods like poultry that are particularly susceptible to pathogenic contamination. As California and other states develop and implement regulations with rigorous safety requirements, cannabis cultivators, extractors and infused product manufacturers can look to HACCP for guidance on bolstering their quality controls. Wikipedia actually has a very helpful summary of the terms referenced and discussed here.

Dr. Markus Roggen, vice president of extraction

The HACCP system consists of six steps, the first of which being a hazard analysis. For Dr. Markus Roggen, vice president of extraction at Outco, a medical cannabis producer in Southern California, one of their hazard analyses takes place at the drying and curing stage. “When we get our flower from harvest, we have to think about the drying and curing process, where mold and bacteria can spoil our harvest,” says Dr. Roggen. “That is the hazard we have to deal with.” So for Dr. Roggen and his team, the hazard they identified is the potential for mold and bacteria growth during the drying and curing process.

The next step in the HACCP system is to identify a critical control point. “Correct drying of the flower will prevent any contamination from mold or bacteria, which is a control point identified,” says Dr. Roggen. “We also have to prevent contamination from the staff; it has to be the correct environment for the process.” That might include things like wearing gloves, protective clothing and hand washing. Once a control point is identified, the third step in the process is to develop a critical limit for those control points.

A critical limit for any given control point could be a maximum or minimum threshold before contamination is possible, reducing the hazard’s risk. “When we establish the critical limit, we know that water activity below 0.65 will prevent any mold growth so that is our critical limit, we have to reach that number,” says Dr. Roggen. The fourth step is monitoring critical control points. For food manufacturers and processors, they are required to identify how they monitor those control points in a written HACCP plan. For Dr. Roggen’s team, this means using a water activity meter. “If we establish the critical control point monitoring, water activity is taken throughout the drying process, as well as before and after the cure,” says Dr. Roggen. “As long as we get to that number quickly and stay below that number, we can control that point and prevent mold and bacteria growth.”

One of the cultivation facilities at Outco

When monitoring is established and if the critical limit is ever exceeded, there needs to be a corrective action, which is the fifth step in a HACCP plan. In Dr. Roggen’s case, that would mean they need a corrective action ready for when water activity goes above 0.65. “If we don’t have the right water activity, we just continue drying, so this example is pretty simple,” says Dr. Roggen. “Normal harvest is 7 days drying, if it is not dry enough, we take longer to prevent mold or bacteria growth.”

The sixth step is establishing procedures to ensure the whole system works. In food safety, this often means requiring process validation. “We have to double check that our procedure and protocols work,” says Dr. Roggen. “Checking for water activity is only a passive way of testing it, so we send our material to an outside testing lab to check for mold or bacteria so that if our protocols don’t work, we can catch those problems in the data and correct them.” They introduced weekly meetings where the extraction and cultivation teams get together to discuss the processes. Dr. Roggen says those meetings have been one of the most effective tools in the entire system.

Dr. Roggen’s team identified worker safety as a potential hazard

The final step in the process is to keep records. This can be as simple as keeping a written HACCP plan on hand, but should include keeping data logs and documenting procedures throughout production. For Dr. Roggen’s team, they log drying times, product weight and lab tests for every batch. Using all of those steps, Dr. Roggen and his team might continue to update their HACCP plans when they encounter a newly identified hazard. While this example is simplistic, the conceptual framework of a HACCP plan can help detect and solve much more complex problems. For another example, Dr. Roggen takes us into his extraction process.

Dr. Roggen’s team, on the extraction side of the business, uses a HACCP plan not just for preventing contamination, but for protecting worker safety as well. “We are always thinking about making the best product, but I have to look out for my team,” says Dr. Roggen. “The health risk to staff in extraction processes is absolutely a hazard.” They use carbon dioxide to extract oil, which carries a good deal of risks as well. “So when we look at our critical control points we need to regularly maintain and clean the extractor and we schedule for that,” says Dr. Roggen.

Gloves, protective clothing, eyewear and respirators are required for workers in the extraction process.

“My team needs respirators, protective clothing, eyewear and gloves to prevent contamination of material, but also to protect the worker from solvents, machine oil and CO2 in the room.” That health risk means they try and stay under legal limits set by the government, which is a critical limit of 3,000 ppm of carbon dioxide in the environment. “We monitor the CO2 levels with our instruments and that is particularly important whenever the extractor is opened.” Other than when it is being opened, Dr. Roggen, notes, the extractor stays locked, which is an important worker safety protocol.

The obvious corrective action for them is to have workers leave the room whenever carbon dioxide levels exceed that critical limit. “We just wait until the levels are back to normal and then continue operation,” says Dr. Roggen. “We updated our ventilation system, but if it still happens they leave the room.” They utilize a sort of double check here- the buddy system. “I took these rules from the chemistry lab; we always have two operators working on the machine on the same time, never anyone working alone.” That buddy check also requires they check each other for protective gear. “Just like in rock climbing or mountain biking, it is important to make sure your partner is safe.” He says they don’t keep records for employees wearing protective gear, but they do have an incident report system. “If any sort of incident takes place, we look at what happened, how could we have prevented it and what we could change,” says Dr. Roggen.

He says they have been utilizing some of these principles for a while; it just wasn’t until recently that they started thinking in terms of the HACCP conceptual framework. While some of those steps in the process seem obvious, and it is very likely that many cannabis processors already utilize them in their standard operating procedures and quality controls, utilizing the HACCP scheme can help provide structure and additional safeguards in production.

plantsjacques
Biros' Blog

Ongoing Pesticide Recalls a Sign of Industry Maturity

By Aaron G. Biros
No Comments
plantsjacques

Regulators in Colorado last week announced another massive recall of cannabis found to contain banned pesticides. 92 batches of cannabis plants, with roughly a dozen plants in each batch, were recalled for using the product, Guardian, on the plants. The culprit was an ingredient in the product called avermectin, a pesticide listed as a ‘bad actor’ by the Pesticide Action Network.

The recall follows dozens of others in Colorado this year, all because tests found pesticides present in cannabis samples. When news spreads of cannabis recalls due to concerns of pesticide contamination, it paints a picture of worrisome problems rampant in the cannabis industry. Alarmists say continued recalls could have disastrous consequences like stalling legalization initiatives or slowing growth in new markets.

In the food industry, recalls are a part of routine business. The FDA created the Reportable Food Registry (RFR) as a way to prevent the shipment of contaminated food products into the supply. In 2015, Chipotle Mexican Grill made news when it sickened dozens with an E.coli outbreak and issued extensive recalls as a result. After that happened, the company reevaluated its practices and improved their food safety program to prevent future outbreaks.

When a recall occurs, it should prompt a surge in inquiries, responses and audits that need to be addressed and reviewed carefully. Ample proactive planning including HACCP, comprehensive risk analysis and validation studies or documents help prevent recalls from occurring in the first place. When recalls do happen, reactive measures should occur immediately with a strategy in place to deal with all of the regulatory compliance, quality, safety and branding ramifications.

When a recall occurs in the food industry, it generally means that there was a foodborne illness outbreak, followed by a reactive measure. That reactive measure, the recall itself, is what prevents foodborne illness outbreaks from growing or becoming an epidemic. Recalls in the food industry show that regulators are concerned about contamination and taking action to safeguard public health. In other words, when a recall occurs, it means that someone is watching.

I think recalls in the cannabis industry are a sign of the marketplace growing up. Recalls can be seen as a good thing, a sign of proper safety measures in place to prevent further contamination. Reporting recalls or failures means that professionals are beginning to pay attention to the safety and quality of processes in place at cannabis production facilities. Looking at the long-term sustainability of the cannabis industry, keeping quality and safety at top of mind will help businesses self-legitimize. Those not striving for the safest practices and the best quality will lose their ability to compete as the market continues to grow. Recalls can tarnish a company’s brand, but they also indicate that the industry has reached a point of legitimacy. Cannabis is now out of the closet and under a microscope.

Cannabis Coaching & Compliance

Avoiding Recalls: Preparing for the What-Ifs

By Maureen McNamara
8 Comments

Recalls are a necessary part of our lives, and they occur quite often. There are hundreds of food recalls performed each year. Now we are experiencing recalls in the cannabis industry. It is important to keep in mind that the primary objective of performing a recall is to protect consumer safety.

Welcome to a whole new game!

The Scoop:

A recall occurs to remove defective or potentially harmful products from the marketplace.

Recalls can be expensive and stigmatizing. Companies involved are usually highly motivated to remedy the issue and recover as quickly as possible. It is in the producer’s best interest to do everything in their power to maintain and regain patient & customer confidence and brand trust as soon as possible.

In the United States, food recalls are typically generated by the U.S. Food and Drug Administration (FDA), or by the U.S. Department of Agriculture (USDA) through the Food Safety and Inspection Service (FSIS). Food manufacturers regularly perform mock recalls and, when needed, perform voluntary recalls of possibly contaminated product. Recently, listeria has become a major concern for contamination in the food industry and as a result, many companies are preparing themselves for prevention strategies.

As cannabis is still federally illegal, the FDA does not perform cannabis recalls. As a result, we are seeing local health departments and the state departments of agriculture getting involved in cannabis recalls. Recent recalls are voluntary and are related to potentially dangerous pesticide residue on flower, concentrates and infused products. Colorado has come into the spotlight recently for businesses performing a number of voluntary recalls, in the interest of protecting consumer safety. This January, a recall included “individual units of marijuana concentrates that are used for vaporizing” testing positive for Imidacloprid, Myclobutanil, Etoxazole and/or Avermectin, which are all pesticides determined by the Colorado Department of Agriculture as not usable on cannabis.

How do we know there is a problem?

  • A manufacturer discovers a problem
  • Inspectors reveal a potential issue
  • A product fails a test carried out by a licensed laboratory
  • A state health department may be alerted to an issue

Preparing for the “What- Ifs”

  • What is your crisis management strategy?
  • How will your team communicate the issue with regulators?
  • What is the protocol to recover or destroy recalled product?
  • What is the communication plan with purveyors & consumers?
  • What new structures will be in place to prevent future issues?

How do we avoid a Recall?

Manufacturers and cultivators endeavor to prevent issues in the first place. Good Manufacturing Practices (GMP), Good Agricultural Practices (GAP) and Hazard Analysis and Critical Control Points (HACCP) plans are used to ensure quality and safety during the production process. Mistakes can occur. It is ultimately the manufacturer’s responsibility to remove any possibly contaminated product from the market quickly and before potential damage is incurred.

As we pioneer the cannabis industry, it is important to be as proactive as possible at every step of the supply chain, from seed to the sale of cannabis: Cultivating, trimming, curing, extracting, infusing, producing, packaging, shipping, receiving, storing and selling are all points where safety measures should be in place.

Prevention Rules!

How is your team doing with the following?

  • GAP, GMP & HACCP plans to ensure quality product
  • Testing, TESTING, Testing- to confirm safety of your goods
  • Requiring strict & tested operating procedures from your suppliers
  • Internal quality reviews
  • Training and Accountability

Our desire is that you do not ever need to recover from a crisis, but mistakes happen. They create a learning opportunity for us to make a higher quality product, to strengthen our procedures and to show our consumers that we are committed to excellence.