Tag Archives: genetics

Steep Hill Labs Expands to Pennsylvania, Washington, D.C.

By Aaron G. Biros
No Comments

Last week, Steep Hill Labs, Inc. announced plans to expand on the East Coast, including licensing for laboratories in Washington, D.C. and Pennsylvania. The cannabis testing company now is operating or developing in seven states, the District of Columbia along with an official arrangement with a research university in Jamaica, according to Cathie Bennett Warner, director of public relations at Steep Hill.

The same team of physicians that oversees the Steep Hill laboratory in Maryland will operate the Pennsylvania and D.C. labs. Heading that team is chief executive officer Dr. Andrew Rosenstein, chief of the division of Gastroenterology at University of Maryland Saint Joseph Medical Center and assistant clinical professor of Gastroenterology and Hepatology at the University of Maryland Medical Center. Dr. Rosenstein has been recognized by Baltimore Magazine as a top doctor in the Baltimore area, according to a press release.

Dr. Andrew Rosenstein, CEO of Steep Hill Maryland, PA and D.C.
Dr. Andrew Rosenstein, CEO of Steep Hill Maryland, PA and D.C.

According to Dr. Rosenstein, they want to provide accurate clinical results for trials with patients using cannabis. “All clinical trials will require a competent, credible and reliable lab partner and that is what we are bringing to the field- and that is why we are working with Steep Hill,” says Dr. Rosenstein. With team members having backgrounds in pathology, molecular diagnostics, clinical chemistry, microbiology and genetics, it should come as no surprise that they plan to participate in clinical research.

Dr. Rosenstein’s vested interest in cannabis safety stems from prior experience with his patients using cannabis. “Over the past five years, we have seen an increased number of patients using cannabis, particularly for managing the side effects of Crohn’s disease and cancer treatment,” says Dr. Rosenstein. “They would bring it up to us and at the time I didn’t know much about it, but anecdotally it’s really clear that a lot of patients have great responses to it.” Not knowing much about the preparation or safety of cannabis at the time led Dr. Rosenstein to advise patients to be very careful if they are immunocompromised.

Examination of cannabis prior to testing- credit Steep Hill Labs, Inc.
Examination of cannabis prior to testing- credit: Steep Hill Labs, Inc.

“When a patient is immunocompromised, a bacterial or fungal infection can be lethal, so because we had patients using cannabis, we wanted to make sure it was safe,” says Dr. Rosenstein. So when Maryland legalized medical cannabis, Dr. Rosenstein and his team saw the need to protect patient safety and Steep Hill was a perfect fit. “We really didn’t want to reinvent the wheel so we looked for someone to partner with,” says Dr. Rosenstein. “Steep Hill has the best technology and the best credibility and we didn’t want to compromise on quality and safety issues. They felt the same way so we partnered with them and culturally it has been a great fit.”

Steep Hill Express in Berkeley, CA- MD,PA and D.C. will have a similar offering of instant potency analysis
Steep Hill Express in Berkeley, CA- MD,PA and D.C. will have a similar offering of instant potency analysis

The new laboratories plan to offer a similar range of services that are offered at other Steep Hill labs, such as rapid potency testing for THC-A, ∆-9-THC, CBD, CBD-A and moisture. But Dr. Rosenstein sees clinical opportunities in the East Coast medical hubs. “We want to provide the testing component for studies, providing clinical reproducibility and consistency, and those are the things as a top-notch lab that we are interested in doing.”

A petri dish of mold growth from tested cannabis- Photo credit: Steep Hill-
A petri dish of mold growth from tested cannabis- Photo credit: Steep Hill Labs, Inc.

With a physician-led group that has experience in molecular diagnostics, partnering with Steep Hill is about being medically focused, according to Dr. Rosenstein. “First and foremost, this is about patient safety.” Because of that, he emphasizes the need for required microbiological contaminant testing, particularly because of his experience with patients. “If you’re a cancer patient and you get a toxic dose of salmonella or E. coli, that can kill you, so testing for microbiologic  contamination is of the highest priority.”

According to Warner, bridging the medical cannabis science gap with Steep Hill’s professionalism and experienced doctors practicing medicine is a big deal. “We are working very closely with their medical team to make sure these standards are medically superior,” says Warner. “To have these doctors with such a high level of knowledge in medicine working with us in cannabis analytics is a breakthrough.”

An Introduction to Cannabis Genetics, Part III

By Dr. CJ Schwartz
No Comments

Polyploidy in Cannabis

Polyploidy is defined as containing more than two homologous sets of chromosomes. Most species are diploid (all animals) and chromosomal duplications are usually lethal, even partial duplications have devastating effects (Down’s syndrome). Plants are unique as in being able to somewhat “tolerate” chromosomal duplications. We often observe hybrid vigor in the F1, while the progeny of the F1 (F2) will produce mostly sickly or dead plants, as the chromosomes are unable to cleanly segregate.

polyploidy
Polyploids are generated when chromosomes fail to separate (non-disjunction) during pollen and egg generation. The chromosomes normally exist in pairs, thus having only one, or three, interferes in pairing in subsequent generations.

Chromosomal duplications, either one chromosome or the whole genome, happen frequently in nature, and actually serves as a mechanism for evolution. However the vast majority (>99.99%) results in lethality.

Thus there is polyploidy in Cannabis, and a few examples are supported by scientific evidence. The initial hybrid may show superior phenotypes and can be propagated through cloning, but there may be little potential for successful breeding with these plants.

Epigenetics and Phenotypic Consistency in Clones

One mechanism of turning off genes is by the DNA becoming physically inaccessible due to a structure resembling a ball. In addition, making molecules similar to DNA (RNA) that prevents expression of a gene can turn off certain genes. Both mechanisms are generally termed epigenetics.

These mice are all genetically identical yet they manifest different phenotypes for fur color.
These mice are genetically identical, yet their coat color phenotype is variable. Something above or beyond (epi) the gene (genetic) is controlling the phenotype.

Epigenetic regulation is often dependent on concentrations of certain proteins. Through the repeated process of cloning, it is possible that some of these proteins may be diluted, due to so many total cell divisions and epigenetic control of gene expression can be attenuated and results in phenotypic variability.

Sexual reproduction, and possibly tissue culture propagation, may re-establish complete epigenetic gene regulation, however the science is lacking. Epigenetic gene regulation is one of the hottest scientific topics and is being heavily investigated in many species including humans.

Hermaphrodites and Sex Determination

Cannabis is an extremely interesting genus (species?) for researching sex determination. Plants are usually either monoecious (both male and female organs on a single plant), or dioecious, separate sexes. Sex determination has evolved many times in many species. Comparing the mechanisms of sex determination in different organisms provides valuable opportunities to contrast and compare, thereby developing techniques to control sex determinations.

The sex organs on a Cannabis plant identified.
The sex organs on a Cannabis plant identified.

Cannabis is considered a male if it contains a Y-chromosome. Females have two X chromosomes. Even though female Cannabis plants do not have the “male” chromosome, they are capable of producing viable pollen (hermaphrodite) that is the source of feminized seeds. Therefore, the genes required to make pollen are NOT on the Y-chromosome, but are located throughout the remainder of the Cannabis genome. However, DNA based tests are available to identify Male Associated Sequence (MAS) that can be used as a test for the Y-chromosome in seedlings/plants.

Natural hermaphrodites may have resulted from Polyploidization (XXXY), or spontaneous hermaphrodites could be a result of epigenetic effects, which may be sensitive to the environment and specific chemical treatments.

Feminized seeds will still have genes segregating, thus they are not genetically identical. This shouldn’t lead to a necessary decrease in health, but could. A clone does not have this problem.

The other issue is that “inbreeding depression” is a common biological phenomenon, where if you are too inbred, it is bad…like humans. Feminized seeds are truly inbred. Each generation will decrease Heterozygosity, but some seeds (lines) may be unhealthy and thus are not ideal plants for a grower.

GMO– The Future of Cannabis?

Is there GMO (genetically modified organism) Cannabis? Probably, but it is likely in a lab somewhere…deep underground! Companies will make GMO Cannabis. One huge advantage to doing so is that you create patentable material…it is unique and it has been created.

The definition of a GMO is…well, undefined. New techniques exist whereby a single nucleotide can be changed out of 820 million and no “foreign” DNA remains in the plant. If this nucleotide change already exists in the Cannabis gene pool, it could happen naturally and may not be considered a GMO. This debate will continue for years or decades.

Proponents of GMO plants cite the substantial increase in productivity and yield, which is supported by science. What remains to be determined, and is being studied, are the long-term effects on the environment, ecosystem and individual species, in both plants and animals. Science-based opponent arguments follow the logic that each species has evolved within itself a homeostasis and messing with its genes can cause drastic changes in how this GMO acts in the environment/ecosystem (Frankenstein effect). Similarly, introducing an altered organism into a balanced ecosystem can lead to drastic changes in the dynamics of the species occupying those ecological niches. As in most things in life, it is not black and white; what is required is a solid understanding of the risks of each GMO, and for science to prove or disprove the benefits and risks of GMO crops.

Adam Jacques and Team Launch Sproutly, Dispensary in Eugene, Oregon

By Aaron G. Biros
No Comments

sproutly signAdam Jacques and his team officially launched the newest arm of their business last week, Sproutly, a dispensary located in Eugene, Oregon. “This is an extension of what the Grower’s Guild Gardens does and what the Microgrower’s Guild was,” says Jacques. The Grower’s Guild Gardens, Jacques’ award-winning cultivation business, is known for their high-CBD genetics and patient-focused work, most notably with Leni Young, which helped lead to the passing of legislation in Alabama called Leni’s Law, decriminalizing the possession of cannabis oil for patients in the state.

The shelves of Sproutly boast over 75 strains of cannabis from Jacques' farm.
Sproutly’s shelves boast over 75 strains of cannabis from Jacques’ farm.

Sproutly is a medical and recreational dispensary that boasts a wide variety of high-CBD strains, a reflection of the team’s focus in the past. “We are extremely medically focused with a variety of unique CBD strains in stock,” says Jacques. “First and foremost are the patients, but entering the recreational market means we will be carrying a wider variety.” The opening of the dispensary is well timed as the team received their Tier II cultivation license, allowing them to grow cannabis up to 20,000 square feet in an outdoor space and 5,000 square feet indoor. So in addition to the handful of brands they carry, including Lunchbox Alchemy edibles, Northwest Kind and Marley Naturals, they also carry over 75 strains from their own Grower’s Guild Gardens.

Adam Jacques in front of a display shelf at Sproutly.
Adam Jacques in front of a display shelf at Sproutly.

Adam and Debra Jacques pride themselves in rigid standards for quality in sourcing, so it should be no surprise that they plan on supplying their dispensary with over 150 strains coming from more than 1,200 plants on their farm. “We really only take products from people we know and trust,” says Jacques. “That is why most of the flower in the dispensary is coming from our farm, so we know exactly what is going into it.” Jacques points to third-party certifications such as Clean Green, for other vendors to find reputable growers. “I need to know where it is coming from and that requires a personal relationship to trust the quality of their products.” The value of trust and personal relationships is also why they go through extensive training of their staff, using their own expertise for in-house training.

rsz_img_6047

The team includes Chris West, Elton Prince and John De Kluyver, all of whom have a decade or more of experience cultivating cannabis and working with patients. “We take our bud tenders through training classes, they get tested on their knowledge of products and the science of cannabinoids and terpenes and how the combinations affect people differently,” says Jacques. By leveraging that high level of in-house expertise, the team prides themselves on customer service, helping patients and customers find the right strain or product that suits them best.

In the front of the dispensary, a receptionist greets patients or customers, checking identification and showing you to a bud tender. As you walk into the retail space, you immediately notice the professionalism of the staff, taking time to personalize each customer’s experience without making him or her feel rushed. The clean aesthetics, product selection and knowledgeable staff provide for a friendly retail culture without the common ‘stoner culture’ that usually follows.

Jacques and his team will not be trading in their overalls and work boots just yet as they are inching toward harvesting their 1,200 outdoor cannabis plants soon. Grinning ear-to-ear, Jacques showed off his Tier II cultivation license on the farm, and with it came a glimpse into their exciting growth.

Marijuana Matters

Patent Options Available for Breeding Cannabis

By David C. Kotler, Esq.
No Comments

Patent No.: 909554. Date of patent: August 4, 2015. Years from now, historians and academics may look back on this patent number and date as a watershed mark in the evolution of legal cannabis. Feel free to read the 147 pages of the patent documents but, in short, it “leads to many innovations, provides compositions and methods for breeding, production, processing and use of specialty cannabis.” It was the first time that the U.S. Patent Office (USPTO) had issued a patent for a plant containing significant amounts of THC. One USPTO spokesman recently discussed with a journalist that “there are no special statutory requirements or restrictions applied to marijuana plants.” The following is a broad, and I mean really broad, overview of the options available to protect intellectual property within the cannabis species and strain realm.

Generally speaking, to be patent eligible, an invention must be useful, it must be new, it cannot be obvious and it must be described in a manner so that people of skill in the relevant specialty can understand what the invention is, make it and use it without engaging in undue experimentation. In terms of cannabis, essentially the breeder must have created a new and non-obvious strain over what already exists that is useful such as being highly resistant to molds or having a specific concentration of CBD.

Breeders potentially have a number of options available to them, despite the common belief otherwise. In the U.S. there are five types of intellectual property protection that breeders can obtain for new plant varieties or their use of clones:

One may seek protection for seeds and tubers, known as Plant Variety Protection. A tuber is essentially a swelled root that forms a storage organ. The Plant Variety Protection Office provides this protection. To apply for Plant Variety Protection, the applicant submits information to show that the variety is new, distinct, uniform and stable.

For asexually propagated plants except for tubers, a Plant Patent may be sought. These are sought through the USPTO. This is relatively inexpensive compared with a Utility Patent covering the genetics.

Trade secrets are often used to protect inventions that will not be commercially available or cannot be reverse engineered. For example, if a new strain is invented but is only commercially available in its final form, trade secret protection may be the best form. The most important thing to remember is that a company must follow a strict set of requirements to keep the trade secret confidential.

The last patent type protection could be through a Utility Patent. A Utility Patent can be issued for any type of plant showing its utility. These are issued by the USPTO. Seeking and obtaining a Utility Patent is expensive and complex.

In addition to Patent Protection, breeders may seek Contractual Agreements restricting the use of the clones (i.e. a material use agreement). The parameters that a breeder wishes to craft can essentially be crafted into the language of any type of agreement that is drafted to memorialize the relationship and terms between the parties.

A few broad-stroke items to keep in mind with regard to patents particularly relative to the patenting of cannabis strains and the like: First, is the passage of the America Invents Act which among other changes allowed for the U.S. to transition from a First-to-Invent patent system to a system where priority is given to the first inventor to file a patent application. Second, there are the potential bars based on different types of prior use.

Any discussion about the foregoing topic should necessarily include the question: Is it really good for the cannabis industry and its evolution? The dialogue moves out of one steeped in tradition, lure of trips through mountain passages, and potentially patient benefit or in search of higher quality and into connotations of business law and big businesses sweeping in to take over. It is an expensive process. It may be inevitable. In the meantime, protect yourself as best you can and as you see fit.

An Introduction to Cannabis Genetics, Part II

By Dr. CJ Schwartz
No Comments

Plants and animals have roughly 25,000 to 30,000 genes. The genes provide the information needed to make a protein, and proteins are the building blocks for all biological organisms. An ideal analogy is a blueprint (DNA) for an alternator (the protein) in a car (the plant). Proteins are the ‘parts’ for living things. Some proteins will work better than others, leading to visible differences that we call phenotypes.

geneticspaintedchromMany traits, and the genes controlling them, are of interest to the cannabis industry. For hemp seed oil, quality, quantity and content can be manipulated through breeding natural genetic variants. Hemp fibers are already some of the best in nature, due to their length and strength. Finding the genes and proteins responsible for elongating the fibers can allow for the breeding of hemp for even longer fibers. In cannabis, the two most popular genes are THCA and CBDA synthases. There are currently over 100 sequences of the THCAS/CBDAS genes, and many natural DNA variations are known. We can make a family tree using just the THCAS, gene data and identify ‘branches’ that result in high, low or intermediate THCA levels. Generally most of the DNA changes have little to no effect on the gene, but some of the changes can have profound effects.

In fact, CBDAS and THCAS are related, in other words, they have a common ancestor. At some point the gene went through changes that resulted in the protein producing CDBA, or THCA or both. This is further supported by the fact that certain CBDAS can produce some THCA, and vice-versa. Studies into the THCAS and CBDAS family are ongoing and extensive, with terpene synthase genes following close behind.

Identifying gene (genetic) variants and characterizing their biological function allows us to combine certain genes in specific combinations to maximize yield, but determining which genes are important (gene discovery) is the first step to utilizing marker-assisted breeding.

Gene Discovery & Manipulation

The term genetics is often misused in the cannabis industry. Genetics is actually “the study of heredity and the variation of inherited characteristics.” When people say they have good genetics, what they really mean is that they have good strains, presumably with good gene variants. When people begin to cross or stabilize strains, they are performing genetic manipulation.Slide1

A geneticist will observe or measure two strains of interest, for example a plant branching and myrcene production. The high-myrcene plant is tall and skinny with no branching, reducing the yield. Crossing the two strains will produce F1 hybrid seeds. In some cases, F1 hybrids create unique desirable phenotypes (synergy) and the breeder’s work is completed. More often, traits act additively, thus we would expect the F1 to be of medium branching and medium myrcene production, a value between that of the values recorded for the parents (additive). Crossing F1 plants will produce an F2 population. An F2 population is comprised of the genes from both parents all mixed up. In this case we would expect the F2 progeny to have many different phenotypes. In our example, 25% of the plants would branch like parent A, and 25% of the F2 plants will have high myrcene like parent B. To get a plant with good branching and high myrcene, we predict that 6.25% (25% x 25%) of the F2 plants would have the correct combination.

The above-described scenario is how geneticists assign gene function, or generally called gene discovery. When the gene for height or branching is identified, it can now be tracked at the DNA level versus the phenotype level. In the above example, 93.5% of your F2 plants can be discarded, there is no need to grow them all to maturity and measure all of their phenotypes.Slide1

The most widely used method for gene discovery using natural genetic variation is by quantitative trait loci mapping (QTL). For these types of experiments, hundreds of plants are grown, phenotyped and genotyped and the data is statistically analyzed for correlations between genes (genotype) and traits (phenotype; figure). For example, all high-myrcene F2 plants will have one gene in common responsible for high myrcene, while all the other genes in those F2 plants will be randomly distributed, thus explaining the need for robust statistics. In this scenario, a gene conferring increased myrcene production has been discovered and can now be incorporated into an efficient marker-assisted breeding program to rapidly increase myrcene production in other desirable strains.

CannaGrow: Education on the Science of Cultivation

By Aaron G. Biros
No Comments

The CannaGrow Conference & Expo, held in San Diego on May 7th and 8th, educated attendees on the science of cannabis cultivation. The conference brought subject matter experts from around the country to discuss cannabis breeding and genetics, soil science and cultivation facility design.rsz_img_5038

Discussions at the conference delved deep into the science behind growing while providing some expert advice. Drew Plebani, chief executive officer of Commercial Cultivator, Inc., gave a comprehensive review of soil ecology and how understanding soil fertility is crucial to successfully growing consistent cannabis. “Soil fertility is measured by laboratories in terms of soil minerals, plant-available nutrients, percent of organic materials, pH levels and most importantly the balance of the soil’s chemical makeup,” says Plebani. “There is no silver bullet in soil ecology; increasing your soil fertility comes down to understanding the composition of soil with analytical testing.” Plebani went on to add that soil systems for cannabis need to be slightly fungal-dominant in developing an endomycorrhizal system, which is optimal for cannabis plant growth.

Plebani notes that growth and viability are reliant on maximum root mass.
Plebani notes that growth and viability are reliant on maximum root mass.

Tom Lauerman, colloquially known as Farmer Tom and founder of Farmer Tom Organics, kicked off the conference with an introduction to cultivation techniques. Lauerman also delved into his experience working with federal agencies in conducting the first ever health hazard evaluation (HHE) for cannabis with the National Institute for Occupational Safety and Health (NIOSH). Through the HHE program, NIOSH responds to requests for evaluations of workplace health hazards, which are then enforced by the Occupational Safety & Health Administration (OSHA). Lauerman worked with those federal agencies, allowing them to tour his cultivation facilities to perform an HHE for cannabis processing worker safety. “I was honored to introduce those federal agencies to cannabis and I think this is a great step toward normalizing cannabis by getting the federal government involved on the ground level,” says Lauerman. Through the presentation, Lauerman emphasized the importance of working with NIOSH and OSHA to show federal agencies how the cannabis production industry emerged from the black market, branding itself with a sense of legitimacy.

Attendees flocked to Jacques and his team after the presentation to meet them.
Attendees flocked to Jacques and his team after the presentation to meet them.

Adam Jacques, award-winning cultivator and owner of Grower’s Guild Gardens, discussed his success in breeding CBD-dominant strains and producing customized whole-plant extractions for specific patients’ needs. “I find higher percentages of CBD in plants harvested slightly earlier than you would for a high-THC strain,” says Jacques. “Using closed-loop carbon dioxide extraction equipment, we can use multiple strains to homogenize an oil dialed in for each patient’s specific needs.” As a huge proponent of the Entourage Effect, Jacques stressed the importance of full plant extraction using fractionation with carbon dioxide. He also stressed the importance of analytical testing at every step during processing.

Hildenbrand discussing some of the lesser-known terpenoids yet to be studied.
Hildenbrand discussing some of the lesser-known terpenoids yet to be studied.

Zacariah Hildenbrand, Ph.D., chief scientific officer at C4 Laboratories, provided the 30,000-foot view of the science behind compounds in cannabis, their interactions and his research. With the help of their DEA license, he started the C4 Cannabinomics Collaborative, where they are working with Dr. Kevin Schug at the University of Texas-Arlington to screen various cannabis strains to discover new molecules and characterize their structure. “Secondarily, we are using gene expression profiles and analysis to understand the human physiological response and the mechanism through which they elicit that response,” says Hildenbrand. “As this research evolves, we should look to epigenetics and understanding how genes are expressed.” His collaborative effort uses Shimadzu’s Vacuum Ultraviolet Spectroscopy (VUV), and they use the only VUV instrument in an academic laboratory in the United States. “Pharmaceuticals are supposed to be a targeted therapy and that is where we need to go with cannabis,” says Hildenbrand. Him and his team at C4 Laboratories want to work on the discovery of new terpenes and analyze their potential benefits, which could be significant research for cannabis medicine.

Other important topics at the conference included facility design and optimization regarding efficient technologies such as LED lighting and integrated pest management.

An Introduction to Cannabis Genetics, Part I

By Dr. CJ Schwartz
3 Comments

What is DNA?

DNA stores information about how to build an organism. Just as a series of 0’s and 1’s represents digital data, DNA data is represented by four letters (A, C, G and T), which inherently allows DNA to store more information per unit (Figure 1).

Figure 1
Figure 1

The amount of DNA required to build a human is mind-boggling. The human genome has 3.2 billion A’s, C’s, G’s, or T’s, (called nucleotides). Cannabis has 820 million nucleotides. This is true for every cell in the organism. The DNA from a single human cell when spread out would stretch six feet long. A cell is not visible to the naked eye, yet it contains a microscopic thread of DNA six feet long! If you put all the DNA molecules in your body end to end, the DNA would reach from the Earth to the Sun.

DNA is common in all living things, and all living things are related through DNA. Humans and plants share 50% of their genes. In humans, 99.9% of the DNA is identical, thus just 0.1% of DNA differences accounts for all of the variation observed in humans. Cannabis, as a species, is more variable with approximately 1% of the DNA being different among strains. DNA is a super efficient and reliable information storage system. However, mistakes (mutations) do occur and while infrequent, these mutations account for all the differences observed within a species and is called natural genetic variation. Variation within the genomes of a species can help the species survive in unfavorable conditions (evolution) and is also the source of differences in traits, which is the material that is required for successful breeding.

Natural Genetic Variation

DNA mutations occur in every generation and these changes will be different in each individual creating natural genetic variation. Mutations (or more accurately referred to as DNA changes) will be inherited by offspring and will persist in the population if the offspring reproduce.

Figure 2
Figure 2

DNA differences maintain diversity in the gene pool, allowing organisms to respond to new environments (migration) or environmental changes (adaptation). The two most commonly described cannabis families are Indicas and Sativas. Indicas, being from cooler temperate regions, have wide leaves allowing the maximum capture of light during the shorter growing season. Sativas, being equatorial, have smaller leaves, which may be an advantage for such things as powdery mildew in a humid environment. Figure 2 shows the enormous amount of natural variation in leaves for one species with a worldwide population (Arabidopsis thaliana).

A DNA change that occurred a long time ago will be more useful to divide people/plants into different groups. For example, there are ancient DNA changes that differentiate humans originating from Europe or Asia. Other newer DNA changes allow us to further divide Europeans into those originating from Northern versus Southern Europe. Thus, different DNA changes have different values for determining relatedness or ancestry, yet every DNA change provides some information for determining heredity.

Figure 3
Figure 3

Family Trees

By comparing DNA changes among different strains, we can measure the relatedness between strains. For example, if strain A has a DNA change indicative of Kush ancestry and strain B has a DNA change indicative of hemp ancestry, we can assign strains to branches of the cannabis family tree comprised of strains that contain similar DNA changes. Figure 3 shows 184 strains that have been characterized for these changes, and the position of each strain is based on its shared DNA with neighboring strains. The two best-defined families of cannabis are hemp (blue) and kush (black). Strains within a family are more closely related. Strains in separate families, such as kush and hemp, are more distantly related.


 

Editor’s Note: This is the first installment in a series of articles focused on answering common questions regarding cannabis genetics. If you have questions regarding cannabis genetics, or wish to speak more about the topic please post in the comments section below. The next installment will delve into the THC synthase, gene discovery and manipulation and mapping chromosomes.

Researching Cannabis Genetics: A Q&A with CJ Schwartz, Ph.D.

By Aaron G. Biros
3 Comments

Studying cannabis genetics is a convoluted issue. Strain classification, medicinal effects and plant breeding are particular areas in the science of cannabis that still require heavy research. Marigene, a company researching cannabis genetics, is currently working with universities and research institutes to help map the cannabis genome and catalog genetic variation.

cjschwartzmarigene
CJ Schwartz, Ph.D.

According to CJ Schwartz, Ph.D., chief executive officer and founder of Marigene, their mission is to “to classify, certify, and improve cannabis.” After studying genetics and cellular biology at the University of Minnesota, Schwartz received his Ph.D. in biochemistry from the University of Wisconsin. His research in the past decade has focused on genetic variations that control flowering time, discovering the expression of a gene called Flowering Locus T leads to differential flowering time of plants and is dependent on their native locations. We sat down with Schwartz to learn more about his research and collaborative efforts.


Cannabis Industry Journal: Why are you researching mapping the cannabis genome?

CJ Schwartz, Ph.D: We seek to identify the genetic differences among cannabis strains and the genes responsible for these differences. Genetic differences are what cause different strains to have different effects. DNA allows reproducibility, consistency, and transparency for your cannabis strains.

The more information we gather about cannabis genetics, the more tools we have available to create tailored strains. Cannabis is a targeted compound. It interacts with a very specific system in the human body, similar to hormones, such as insulin. Understanding the cannabis genome will help bring legitimacy and integrity to cannabis products, and allow us to better understand how chemicals from cannabis interact with the human brain. Genetic identification can provide a method of certification to more comprehensively describe plant material.

Schwartz doing sample preparation on the lab bench.
Schwartz doing sample preparation on the lab bench.

CIJ: How did you get involved in cannabis research?

Schwartz: My interest in cannabis guided my research career. Cannabis may not be a cure-all, but it has significant and measurable medicinal effects for many patients.

To allow true development of cannabis products, we need more science! Our genetic analysis is required for normalization and acceptance of cannabis products, but also essential for future breeding efforts to develop better and more useful plants.

Our sister company, Hempgene, is applying all of the same technology and techniques for hemp research. One focus of Hempgene is to manipulate flowering time in select hemp cultivars so that they mature at the appropriate time in different environments.

CIJ: What do you hope to accomplish with your research?

Schwartz: We can develop or stabilize a plant that produces a very specific chemical profile for a specific condition, such as seizures, nausea or pain. By breeding plants tailored to a patient’s specific ailment, a patient can receive exactly the medicine that they need and minimize negative side effects.

The current term describing the interaction of cannabis compounds is called the entourage effect. Interactions among compounds can be additive or synergistic. The entourage effect describes synergistic effects, where small amounts of compound A (e.g. Myrcene) vastly increase the effects of compound B (e.g. THC). Instead of flooding one’s body with an excessive amount of chemicals to get a non-specific effect, cannabis plants can be bred to produce a very specific effect.

labmarigene
A view of some of the work stations inside the laboratory at Marigene.

Currently our goal is to catalog the natural genetic variation of cannabis, and to identify DNA changes that affect a trait of interest. Once superior variants of a gene are identified, those variants can be combined, by marker-assisted breeding, to produce new combinations of genes. How different cannabis chemicals interact to produce a desired effect, and how different human genetics influence the efficacy of those chemicals should be the ultimate goal of medical marijuana research.

We are working closely with academic institutions and chemical testing labs to gather data for establishing correlations between specific cannabis strains and desirable chemical profiles. Our closest collaborator, Dr. Nolan Kane at UC-Boulder, is working to complete the Cannabis genomic sequence and generate the first high- resolution cannabis genetic map.

We are currently accepting samples and we produce a report in roughly two to three months. For one sequencing run, we identify 125 million pieces of DNA that are 100 base pairs long. We get so much information so there is a considerable time commitment.

Tech Startup Seeking Investors for Cannabis Data Research Tool

By Aaron G. Biros
No Comments

Innovations in technology used for cannabis research have the potential to lead to major breakthroughs and discoveries for the plant’s various applications. Software and information technologies are particularly useful for sorting through the tremendous amount of data required in medical research and the cannabis industry. Tímea Polgár, founder of CannaData, worked in the pharmaceutical and biotech industries previously as a molecular biologist and computational chemist.

Tímea Polgár, founder of CannaData
Tímea Polgár, founder of CannaData

Her background in informatics, pharmaceutical research, molecular biology and chemistry brings her to the cannabis industry to study the plant in an herbal medicine context using high-tech informatics. Polgár, originally from Hungary, received her PhD from Budapest University of Technology and Engineering in pharmaceutical drug discovery. She has worked as a senior research scientist at Gedeon Richter in Budapest and as a senior molecular modeler at Servier, Inc. in Paris, France. After leaving the pharmaceutical industry, she began working at a startup called Chemaxon, a chemistry informatics company working on scientific business development. Polgár has worked for years in scientific business development, leveraging technology and knowledge to businesses, which brought her to work across multiple disciplines.

CannaData is essentially a software tool used to gather information on strain genetics, chemical components of different strains, molecular mechanisms of different strains and the medicinal effects. According to Polgár, the company plans to build a continuously growing data repository in conjunction with computational modeling and research in determining entourage effects to pinpoint how active chemical agents in cannabis interact. The tool will help scientists find areas of the plant that need more studying and areas that are inert. In addition to the database, CannaData will provide scientific analysis of data from seed banks, laboratories, clinics and other businesses collecting data in the cannabis industry.

A flowchart of the scientific concept behind herbal medicine research
A flowchart of the scientific concept behind herbal medicine research

Polgár’s organization is currently seeking investors to launch the project in hopes of connecting the cannabis industry, herbal medicine and computational chemistry for more accurate scientific research and understanding of the plant. According to Polgár, research and development of disease-fighting drugs has long had a narrow-minded approach. “Herbal medicine is very complex with numerous active chemical components. Recent technological and computational advancements have made it possible to study these chemical network interactions,” says Polgár. “The cannabis industry could provide a pioneering route for the novel concept of combining herbal medicinal research with information technology, furthering our molecular understanding of the benefits of cannabis.”

A flowchart breaking down the chemical composition of cannabis
A flowchart breaking down the chemical composition of cannabis

Polgár believes that this type of research has the ability to help support standardization and quality control in the cultivation of cannabis. “We are linking technologies to herbal medicine and cannabis where there is a huge need to manage, extract and analyze data,” says Polgár. “Today, there are computational technologies that can manage this quantity of information required to model and understand herbal molecular mechanisms and we will be the first ones to do so on a commercial level.”

A flowchart describing the technical concept of CannaData, depicting the utility of a data repository
The technical concept of CannaData, depicting the utility of a data repository

Polgár’s organization is seeking investors looking to innovate in the areas of life sciences, pharmaceutical research and software development. Through bringing broad information technological solutions from research to the cannabis industry, CannaData hopes to serve analytical laboratories with chemical informatics software services. Ultimately, this project will serve the cannabis industry by analyzing data on strain genetics and known chemical profiles of cannabis, furthering scientific research on cannabis.