Tag Archives: extraction

California Manufacturing Regulations: What You Need To Know

By Aaron G. Biros
No Comments

In late November, California released their proposed emergency regulations for the cannabis industry, ahead of the full 2018 medical and adult use legalization for the state. We highlighted some of the key takeaways from the California Bureau of Cannabis Control’s regulations for the entire industry earlier. Now, we are going to take a look at the California Department of Public Health (CDPH) cannabis manufacturing regulations.

According to the summary published by the CDPH, business can have an A-type license (for products sold on the adult use market) and an M-type license (products sold on the medical market). The four license types in extraction are as follows:

  • Type 7: Extraction using volatile solvents (butane, hexane, pentane)
  • Type 6: Extraction using a non-volatile solvent or mechanical method
    (food-grade butter, oil, water, ethanol, or carbon dioxide)
  • Type N: Infusions (using pre-extracted oils to create edibles, beverages,
  • capsules, vape cartridges, tinctures or topicals)
  • Type P: Packaging and labeling only

As we discussed in out initial breakdown of the overall rules, California’s dual licensing system means applicants must get local approval before getting a state license to operate.

The rules dictate a close-loop system certified by a California-licensed engineer when using carbon dioxide or a volatile solvent in extraction. They require 99% purity for hydrocarbon solvents. Local fire code officials must certify all extraction facilities.

In the realm of edibles, much like the rule that Colorado recently implemented, infused products cannot be shaped like a human, animal, insect, or fruit. No more than 10mg of THC per serving and 100mg of THC per package is allowed in infused products, with the exception of tinctures, capsules or topicals that are limited to 1,000 mg of THC for the adult use market and 2,000 mg in the medical market. This is a rule very similar to what we have seen Washington, Oregon and Colorado implement.

On a somewhat interesting note, no cannabis infused products can contain nicotine, caffeine or alcohol. California already has brewers and winemakers using cannabis in beer and wine, so it will be interesting to see how this rule might change, if at all.

CA Universal Symbol (JPG)

The rules for packaging and labeling are indicative of a major push for product safety, disclosure and differentiating cannabis products from other foods. Packaging must be opaque, cannot resemble other foods packaged, not attractive to children, tamper-evident, re-sealable if it has multiple servings and child-resistant. The label has to include nutrition facts, a full ingredient list and the universal symbol, demonstrating that it contains cannabis in it. “Statute requires that labels not be attractive to individuals under age 21 and include mandated warning statements and the amount of THC content,” reads the summary. Also, manufacturers cannot call their product a candy.

Foods that require refrigeration and any potentially hazardous food, like meat and seafood, cannot be used in cannabis product manufacturing. They do allow juice and dried meat and perishable ingredients like milk and eggs as long as the final product is up to standards. This will seemingly allow for baked goods to be sold, as long as they are packaged prior to distribution.

Perhaps the most interesting of the proposed rules are requiring written standard operating procedures (SOPs) and following good manufacturing practices (GMPs). Per the new rules, the state will require manufacturers to have written SOPs for waste disposal, inventory and quality control, transportation and security.

Donavan Bennett, co-founder and CEO of the Cannabis Quality Group

According to Donavan Bennett, co-founder and chief executive officer of the Cannabis Quality Group, California is taking a page from the manufacturing and life science industry by requiring SOPs. “The purpose of an SOP is straightforward: to ensure that essential job tasks are performed correctly, consistently, and in conformance with internally approved procedures,” says Bennett. “Without having robust SOPs, how can department managers ensure their employees are trained effectively? Or, how will these department managers know their harvest is consistently being grown? No matter the employee or location.” California requiring written SOPs can potentially help a large number of cannabis businesses improve their operations. “SOPs set the tempo and standard for your organization,” says Bennett. “Without effective training and continuous improvement of SOPs, operators are losing efficiency and their likelihood of having a recall is greater.”

Bennett also says GMPs, now required by the state, can help companies keep track of their sanitation and cleanliness overall. “GMPs address a wide range of production activities, including raw material, sanitation and cleanliness of the premises, and facility design,” says Bennett. “Auditing internal and supplier GMPs should be conducted to ensure any deficiencies are identified and addressed. The company is responsible for the whole process and products, even for the used and unused products which are produced by others.” Bennett recommends auditing your suppliers at least twice annually, checking their GMPs and quality of raw materials, such as cannabis flower or trim prior to extraction.

“These regulations are only the beginning,” says Bennett. “As the consumer becomes more educated on quality cannabis and as more states come online who derives a significant amount of their revenue from the manufacturing and/or life science industries (e.g. New Jersey), regulations like these will become the norm.” Bennett’s Cannabis Quality Group is a provider of cloud quality management software for the cannabis industry.

“Think about it this way: Anything you eat today or any medicine you should take today, is following set and stringent SOPs and GMPs to ensure you are safe and consuming the highest quality product. Why should the cannabis industry be any different?”

Soapbox

Terpene Reconstitution: This Oak Barrel Is Not Your Answer

By Dr. Zacariah Hildenbrand
3 Comments

I’m not much of an oenophile but I recently came across a very interesting set of documentaries about sommeliers, which are experts on the science of wine and, most importantly, how wines are to be paired with food. What struck me as the most fascinating topic pertained to how mistakes made in the vineyard could be concealed by the barrel in which the wine is stored. For example, if the weather conditions throughout the season had been particularly tumultuous, and you end with sub-optimal grapes that are lacking complexity, then you can compensate for this by aging the wine in a variety of different oak barrels to enhance the flavor. To me, this is synonymous with the way that I’ve seen cannabis concentrates being handled, particularly with respect to terpenes. More specifically, it has recently become somewhat fashionable to supplement cannabis extracts with commercially available terpenes to reestablish an aroma profile that is most representative of the original stock material. Taken one step further, I have even heard of hemp extracts being supplemented with terpenes to achieve a particular strain phenotype, which I cannot imagine pans out very well. In my opinion, this is a very bad idea for two reasons:

One, cannabis is incredibly complex and can contain over 100 different terpene molecules, which can collectively act as anti-inflammatories (Chen et al., 2014), anti- microbial agents (Russo, 2011), sleep aids (Silva et al., 2007), bronchodilators (Falk et al., 1990), and even insulin regulators (Kim et al., 2014). So let’s say that you get your stock material tested and the laboratory screens the product for the top 25 most-prevalent terpenes: alpha- and beta-pinenes, linalool, limonene, beta-myrcene, etc. At that point you utilize this information to supplement your extraction product with these terpenes. However, you still may be missing information about other important molecules such as trans-2-pinanol, alpha-bisabolene and alloaromadendrene that are produced at extremely low, yet therapeutically relevant concentrations in the plant. So essentially with the limited information of the terpenes actually present in your stock material, you would be trying to rebuild a puzzle with only a small fraction of the pieces. Even Ben Affleck’s character in the movie ‘The Accountant’ can’t effectively pull this off.

An example of some commercially available terpenes on the market

Secondarily, not all commercially available terpenes are created equal. I’ll be the first to admit that I don’t have decades of experience vetting the quality of terpenes currently on the market; however, the several times that I have thrown samples into the GC-FID (Gas Chromatograph equipped with a Flame Ionization Detector) I have been unpleasantly surprised. Expecting beta-caryophyllene and detecting caryophyllene oxide is frustrating and in my opinion, such inaccuracies are wrong and should not be accepted as colloquialisms.

The moral of the story here is that in order to produce premium cannabis extracts/concentrates, the stock material needs to be handled with extreme care in order to retain the bouquet of terpenes in their natural ratios. This is incredibly important given the volatile nature of terpenes and their seemingly ephemeral, yet vital, nature in cannabis. Thankfully in this bourgeoning industry there are a number of extraction professionals who are delicately navigating the balance between art and science to produce premium products that are incredibly terpene-rich. However, for every alchemyst there is also someone trying to circumvent nature and while as a scientist I am inherently in favor of experimentation, I am also an admirer of natural processes.


Enforcement of Intellectual Property Rights for Cannabis Put to Test in Federal Court

By Dr. Travis Bliss
No Comments

A number of cannabis businesses have pursued federal intellectual property protection for their cannabis-related innovations, such as U.S. patents that protect novel cannabis plant varieties, growing methods, extraction methods, etc. Enforcement of such federal IP rights requires that the IP owner file suit in federal court asserting those rights against another cannabis company. However, given that cannabis is still illegal under federal law, the industry is uncertain about whether a federal court will actually enforce cannabis-related IP rights. This question might be answered soon.

The potential impact of this case goes way beyond the two parties involvedOrochem Technologies, Inc. filed a lawsuit in federal court in the Northern District of Illinois on September 27, 2017, seeking to assert and enforce trade secret rights against Whole Hemp Company, LLC. According to the complaint, Orochem is a biotechnology company that uses proprietary separation methods to extract and purify cannabidiol (CBD) from industrial hemp in a way that produces a solvent-free and THC-free CBD product in commercially viable quantities.

The complaint goes on to say that Whole Hemp Company, which does business as Folium Biosciences, is a producer of CBD from industrial hemp and that Folium engaged Orochem to produce a THC-free CBD product for it. According to the allegations in the complaint, Folium used that engagement to gain access to and discover the details of Orochem’s trade secret method of extracting CBD so that it could take the process and use it at their facility.

The complaint provides a detailed story of the events that allegedly transpired, which eventually led to an Orochem employee with knowledge of the Orochem process leaving and secretly starting to work for Folium, where he allegedly helped Folium establish a CBD production line that uses Orochem’s trade secret process. When Orochem learned of these alleged transgressions, it filed the lawsuit, claiming that Folium (and the specific employee) had misappropriated its trade secret processes for extracting and purifying CBD.

While the particular facts of this case are both interesting and instructive for companies operating in the cannabis industry, the potential impact of this case goes way beyond the two parties involved.

If it moves forward, this case will likely provide a first glimpse into the willingness of federal courts to enforce IP rights that relate to cannabis. Orochem is asserting a violation of federal IP rights established under the federal Defend Trade Secrets Act (DTSA) and is asserting those rights in federal district court. As a result, the federal district court judge will first need to decide whether a federal court can enforce federal IP rights when the underlying intellectual property relates to cannabis.

If the court ultimately enforces these federal trade secret rights, it could be a strong indication that other federal IP rights, such as patent rights, would also be enforceable in federal court. Since the outcome of this case will likely have a far reaching and long lasting impact on how the cannabis industry approaches and deals with intellectual property, it’s a case worth watching.

JCanna Boot Camp Educates Portland Attendees

By Aaron G. Biros
No Comments

On Monday, August 28th, attendees of the Cannabis Science Conference descended on Portland, Oregon for a week of educational talks, networking and studying the science of cannabis. On Monday, Chalice Farms, an extracts and infused products company, hosted the full-day JCanna Boot Camp focused on a deep dive behind the scenes of a cannabis production facility. The Cannabis Science Conference, hosted by Josh Crossney, founder of JCanna, takes place August 28th to 30th.

Attendees touring an extraction setup

Attendees were split into five groups where they listened to a variety of educational sessions and toured the facility. A track focused on cultivation, led by Autumn Karcey, president of Cultivo, Inc., detailed all things facility design for cannabis cultivation, including an in-depth look at sanitation and safety. For example, Karcey discussed HVAC cleanliness, floor-to-ceiling sanitation and the hazards associated with negative pressure. These principles, while applicable to most cultivating facilities, applies particularly to commercial-scale grows in a pharmaceutical setting.

Sandy Mangan and Tristan DeBona demonstrating the grinding technique for sample prep

During one session, Sandy Mangan, accounts manager at SPEX Sample Prep and Tristan DeBona, sales specialist at SPEX Sample Prep, demonstrated the basics of sample preparation for detecting pesticides in infused products, such as gummies. That required using their GenoGrinder and FreezerMill, which uses liquid nitrogen to make gummies brittle, then pulverizing them to a powder-like substance that is more conducive for a QuEChERS preparation.

Joe Konschnik and Susan Steinike demonstrate the QuEChERS method

Joe Konschnik, business development manager at Restek, Susan Steinike, product-marketing manager at Restek and Justin Steimling, an analytical chemist at Restek, gave a demonstration of a full QuEChERS extraction of a cannabis sample for pesticide analysis, with attendees participating to learn the basics of sample preparation for these types of tests.

Following those were some other notable talks, including a tour of the extraction instruments and equipment at Chalice Farms, a look inside their commercial kitchen and a discussion of edibles and product formulation. Dr. Uma Dhanabalan, founder of Uplifting Health and Wellness, a physician with over 30 years of experience in research and patient care, led a discussion of physician participation, patient education and drug delivery mechanisms.

Amanda Rigdon, Emerald Scientific, showing some complex matrices in cannabis products

Amanda Rigdon, chief technical officer of Emerald Scientific, offered a demonstration of easy and adaptable sample preparation techniques for potency testing of infused product matrices. Rigdon showed attendees of the boot camp how wildly diverse cannabis products are and how challenging it can be for labs to test them.

The JCanna Canna Boot Camp is a good example of an educational event catered to the cannabis industry that offers real, hands-on experience and actionable advice. Before the two-day conference this week, the boot camp provided a bird’s eye view for attendees of the science of cannabis.

Cannabis-Infused Beer Goes Mainstream

By Aaron G. Biros
No Comments

Lagunitas Brewing today unveiled a new beer infused with cannabis, making it the first large national brewery to experiment with cannabis. Lagunitas, now owned by Heineken, announced the launch of their “Supercritical Ale,” an IPA brewed with terpenes extracted from cannabis.

The brewery chose to partner with AbsoluteXtracts and CannaCraft, based in California, for their cannabis extract and will use hops from Yakima, Washington. “We’ve long known about the close connection between cannabis and hops,” reads their website. “Now Lagunitas is excited to partner with a like-minded neighbor in Sonoma County, AbsoluteXtracts, to close the gap further with tandem innovations on the topic.” Hops and cannabis belong in the same taxonomic family, Cannabinaceae, and they also have a number of physical similarities, which helps explain the “close connection” they are referring to. The website says the beer will only be available in California—for now. According to Fortune Magazine, the terpenes come from two strains, Blue Dream and Girl Scout Cookies (known as GSC in some states).

The name “Supercritical” comes from the state that carbon dioxide is best used as a solvent for extracting compounds from plants. Terpenes are responsible for the aromatic properties of plants, giving hops the piney and citrusy flavors that come in IPAs, and giving cannabis the same flavors and smells as well. Limonene, for example, is a cyclic terpene molecule that gives us a citrusy smell and flavor.

Coalition brewing Co.’s Two Flowers IPA

They’re not the first brewery to experiment with cannabis-infused beer; smaller craft breweries have been doing it for some time now. Coalition Brewing Co., based in Portland, Oregon, sells a cannabis-infused beer called Two Flowers IPA, with 3mg of cannabidiol (CBD) in a 12oz glass. Dad and Dudes Breweria, based in Aurora, Colorado, also put out a CBD-infused beer last year, called General Washington’s Secret Stash. According to Westword, Dad and Dudes was the first brewery to receive federal approval for a CBD-infused beer, but since the DEA declared cannabis oil illegal last winter, the Alcohol and Tobacco Tax and Trade Bureau rescinded their approval.

The common denominator between these three beers is that none of them contain THC, the popular psychoactive ingredient in cannabis. Perhaps Lagunitas is taking a safer approach with regard to federal legality by only using terpenes, not CBD, and only offering it in state. Coalition’s Two Flowers IPA is also only available in Oregon, but does, however, contain CBD. Check out the video on Lagunitas’ Supercritical Ale below.

Soapbox

Clear vs. Pure: How Fallacies and Ignorance of Extraction Misrepresent the Cannabis Flower

By Dr. Markus Roggen
14 Comments

Demand for cannabis extracts, in particular vaping products, is at an all-time high. People want good oil, and they want to know something about the quality of it. It is therefore time to take a step back and consider the process from plant to cartridge. What is the current industry standard for cannabis extraction, what constitutes quality and where might we need to make some adjustments?

Right now, “clear” oil is hot. Customers have been led to believe that a pale gold extract is synonymous with the best possible cannabis concentrate, which is not necessarily the case. Producing a 95% pure THC extract with a translucent appearance is neither a great scientific feat nor a good representation of the whole cannabis flower. Moreover, it runs counter to the current trend of all-natural, non-processed foods and wellness products.

“My carrots are organic and fresh from the farmers market, my drink has no artificial sweeteners and my honey is raw, but my cannabis oil has undergone a dozen steps to look clear and still contains butane.”Cannabis is a fascinating plant. It is the basis of our livelihood, but more importantly, it enhances the quality of life for patients. The cannabis plant offers a plethora of medicinally interesting compounds. THC, CBD and terpenes are the most popular, but there are so many more. As of the most recent count, there are 146 known cannabinoids1. Cannabinoids are a group of structurally similar molecules2, including THC and CBD, many of which have shown biological activity3.

Then there are terpenes. These are the smaller molecules that give cannabis its distinct smell and flavor, over 200 of which have been identified in cannabis4. But wait, there’s more. The cannabis plant also produces countless other metabolites: flavonoids, alkaloids, phenols and amides5. All these components mixed together give the often-cited entourage effect6,7.

Current industry standards for cannabis oil extraction and purification stand in marked contrast to the complexity of the plant’s components. Due to an unsophisticated understanding of the extraction process and its underlying chemistry, cannabis oil manufacturers frequently produce oil of low quality with high levels of contamination. This necessitates further purifications and clean up steps that remove such contaminants unfortunately along with beneficial minor plant compounds. If one purifies an extract to a clear THC oil, one cannot also offer the full spectrum of cannabinoids, terpenes and other components. Additionally, claiming purities around 95% THC and being proud of it, makes any self-respecting organic chemist cringe8.

Precise control of extraction conditions leads to variable, customized concentrates. THC-A crumble, terpene-rich vape oil, THC sap (from left to right).

The labor-intensive, multi-step extraction process is also contrary to “the clean-label food trend”, which “has gone fully mainstream”9. Exposing the cannabis flower and oil to at least half a dozen processing steps violates consumer’s desire for clean medicine. Furthermore, the current practice of calling supercritical-CO2-extracted oils solvent-less violates basic scientific principles. Firstly, CO2 is used as a solvent, and secondly, if ethanol is used to winterize10, this would introduce another solvent to the cannabis oil.

We should reconsider our current extraction practices. We can offer cannabis extracts that are free of harmful solvents and pesticides, give a better, if not full, representation of the cannabis plant and meet the patients’ desire for clean medicine. Realizing extracts as the growth-driver they are11 will make us use better, fresher starting materials12. Understanding the underlying science and learning about the extraction processes will allow us to fine-tune the process to the point that we target extract customized cannabis concentrates13. Those, in turn, will not require additional multi-step purification processes, that destroys the basis of the entourage effect.

The cannabis industry needs to invest and educate. Better extracts are the result of knowledgeable, skilled people using precise instruments. Backroom extraction with a PVC pipe and a lighter should be horror stories of the past. And only when the patient knows how their medicine is made can they make educated choices. Through knowledge, patients will understand why quality has its price.

In short, over-processing to make clear oil violates both the plant’s complexity and consumers’ desires. Let us strive for pure extracts, not clear. Our patients deserve it.


[1] Prof. Meiri; lecture at MedCann 2017

[2] ElSohly, Slade, Life Sciences 2005, 539

[3] Whiting, et. al., JAMA. 2015, 2456

[4] Andre, Hausman, Guerriero, Frontiers in Plant Science 2016, 19

[5] Hazekamp, et. al., Chemistry of Cannabis Chapter 3.24; 2010 Elsevier Ltd.

[6] Ben-Shabat, et al.; Eur J Pharmacol. 1998, 23

[7] Mechoulam, et al.; Nat Prod Rep. 1999, 131

[8] Medical and Research Grade chemicals are generally of purities exceeding 99.9%

[9] Bomgardner, Chemical & Engineering News 2017, 20

[10] Winterization is the industry term for what is correctly referred to as precipitation.

[11] Year-over changes to market shares in Colorado 2015 to 2016: Concentrates 15% to 23%; Flower 65% to 57%, BDS Analytics, Marijuana Market Executive Report, 2017

[12] Further reading about the whole extraction process: B. Grauerholz, M. Roggen; Terpene and Testing Magazine, July/Aug. 2017

[13] Further reading about optimizing CO2 extraction: M. Roggen; Terpene and Testing Magazine, May/June 2017, 35

PA Announces First 12 Grower/Processor Permit Winners

By Aaron G. Biros
No Comments

The Pennsylvania Department of Health announced today the first 12 winners of growing and processing permits for the state’s medical cannabis program. At first glance, it appears those who won the permits have teams with experience in successful cannabis operations elsewhere in the country. The permit winners now have six months to become operational, according to a press release.

The list of permit winners by region

According to that press release, John Collins, director of the Pennsylvania Office of Medical Marijuana, received 457 applications in total, with 177 prospective grower/processors and 280 for dispensaries. “With today’s announcement, we remain on track to fulfill the Wolf Administration’s commitment to deliver medical marijuana to patients in 2018,” says Collins. “The applications from the entities receiving permits were objectively reviewed by an evaluation team made up of members from across commonwealth agencies.”

A sample score card for the applicants

In the populous Southeast region of Pennsylvania, grower/processor permits were awarded to Prime Wellness of Pennsylvania, LLC, and Franklin Labs, LLC. Prime Wellness is a Connecticut-based enterprise. According to Steve Schain, Esq., attorney at the Hoban Law Group, Franklin Labs includes team members from Garden State Dispensary, a successful medical cannabis operation in New Jersey.

Two of the businesses that won permits are actually from Illinois, not Pennsylvania. GTI Pennsylvania, LLC (Green Thumb Industries), has a strong presence in Illinois and Nevada. AES Compassionate Care LLC lists their business state as Illinois as well.

Steve Schain, Esq. practicing at the Hoban law Group

“Based on the first phase award of grower/processor licensees both the strength and weakness of Pennsylvania’s program has been highlighted,” says Schain. “Many licensee recipients are affiliated with existing national marijuana-related businesses with excellent track records for operating in a transparent, compliant and profitable manner.” The applications were rated on a scorecard out of 1,000 points. “Unfortunately missing from this initial phase license winners are purely regional enterprises who may have been unable to compete with national concerns’ resources and checkbooks.” According to Schain, some of the more significant areas on the scorecard reflect a diversity plan, community impact statement, business history and capacity to operate, capital requirements and operational timetable. Capital requirements are the applicants’ demonstrable financial resources comprised of at least $2 million in capital and $500,000 in cash. All of the growers are required to grow indoors, not in a greenhouse or on an outdoor farm.

There is also a ten-day appeals process for scorecards that will undoubtedly be utilized by companies that were not successful in their bids. The next phase, according to Schain, of Pennsylvania’s Medical Marijuana Program regards “Clininical Registrants” in which grow/processor and dispensary licensure will be awarded to eight applicants, which, if able to satisfy requirements including demonstrating $15 million in capital, will be authorized to open up to six dispensary locations.

 

Implementing a HACCP Plan in Cannabis Processing

By Aaron G. Biros
No Comments

Hazard analysis and critical control points (HACCP) is a robust management system that identifies and addresses any risk to safety throughout production. Originally designed for food safety through the entire supply chain, the risk assessment scheme can ensure extra steps are taken to prevent contamination.

The FDA as well as the Food Safety and Inspection Service currently require HACCP plans in a variety of food markets, including high-risk foods like poultry that are particularly susceptible to pathogenic contamination. As California and other states develop and implement regulations with rigorous safety requirements, cannabis cultivators, extractors and infused product manufacturers can look to HACCP for guidance on bolstering their quality controls. Wikipedia actually has a very helpful summary of the terms referenced and discussed here.

Dr. Markus Roggen, vice president of extraction

The HACCP system consists of six steps, the first of which being a hazard analysis. For Dr. Markus Roggen, vice president of extraction at Outco, a medical cannabis producer in Southern California, one of their hazard analyses takes place at the drying and curing stage. “When we get our flower from harvest, we have to think about the drying and curing process, where mold and bacteria can spoil our harvest,” says Dr. Roggen. “That is the hazard we have to deal with.” So for Dr. Roggen and his team, the hazard they identified is the potential for mold and bacteria growth during the drying and curing process.

The next step in the HACCP system is to identify a critical control point. “Correct drying of the flower will prevent any contamination from mold or bacteria, which is a control point identified,” says Dr. Roggen. “We also have to prevent contamination from the staff; it has to be the correct environment for the process.” That might include things like wearing gloves, protective clothing and hand washing. Once a control point is identified, the third step in the process is to develop a critical limit for those control points.

A critical limit for any given control point could be a maximum or minimum threshold before contamination is possible, reducing the hazard’s risk. “When we establish the critical limit, we know that water activity below 0.65 will prevent any mold growth so that is our critical limit, we have to reach that number,” says Dr. Roggen. The fourth step is monitoring critical control points. For food manufacturers and processors, they are required to identify how they monitor those control points in a written HACCP plan. For Dr. Roggen’s team, this means using a water activity meter. “If we establish the critical control point monitoring, water activity is taken throughout the drying process, as well as before and after the cure,” says Dr. Roggen. “As long as we get to that number quickly and stay below that number, we can control that point and prevent mold and bacteria growth.”

One of the cultivation facilities at Outco

When monitoring is established and if the critical limit is ever exceeded, there needs to be a corrective action, which is the fifth step in a HACCP plan. In Dr. Roggen’s case, that would mean they need a corrective action ready for when water activity goes above 0.65. “If we don’t have the right water activity, we just continue drying, so this example is pretty simple,” says Dr. Roggen. “Normal harvest is 7 days drying, if it is not dry enough, we take longer to prevent mold or bacteria growth.”

The sixth step is establishing procedures to ensure the whole system works. In food safety, this often means requiring process validation. “We have to double check that our procedure and protocols work,” says Dr. Roggen. “Checking for water activity is only a passive way of testing it, so we send our material to an outside testing lab to check for mold or bacteria so that if our protocols don’t work, we can catch those problems in the data and correct them.” They introduced weekly meetings where the extraction and cultivation teams get together to discuss the processes. Dr. Roggen says those meetings have been one of the most effective tools in the entire system.

Dr. Roggen’s team identified worker safety as a potential hazard

The final step in the process is to keep records. This can be as simple as keeping a written HACCP plan on hand, but should include keeping data logs and documenting procedures throughout production. For Dr. Roggen’s team, they log drying times, product weight and lab tests for every batch. Using all of those steps, Dr. Roggen and his team might continue to update their HACCP plans when they encounter a newly identified hazard. While this example is simplistic, the conceptual framework of a HACCP plan can help detect and solve much more complex problems. For another example, Dr. Roggen takes us into his extraction process.

Dr. Roggen’s team, on the extraction side of the business, uses a HACCP plan not just for preventing contamination, but for protecting worker safety as well. “We are always thinking about making the best product, but I have to look out for my team,” says Dr. Roggen. “The health risk to staff in extraction processes is absolutely a hazard.” They use carbon dioxide to extract oil, which carries a good deal of risks as well. “So when we look at our critical control points we need to regularly maintain and clean the extractor and we schedule for that,” says Dr. Roggen.

Gloves, protective clothing, eyewear and respirators are required for workers in the extraction process.

“My team needs respirators, protective clothing, eyewear and gloves to prevent contamination of material, but also to protect the worker from solvents, machine oil and CO2 in the room.” That health risk means they try and stay under legal limits set by the government, which is a critical limit of 3,000 ppm of carbon dioxide in the environment. “We monitor the CO2 levels with our instruments and that is particularly important whenever the extractor is opened.” Other than when it is being opened, Dr. Roggen, notes, the extractor stays locked, which is an important worker safety protocol.

The obvious corrective action for them is to have workers leave the room whenever carbon dioxide levels exceed that critical limit. “We just wait until the levels are back to normal and then continue operation,” says Dr. Roggen. “We updated our ventilation system, but if it still happens they leave the room.” They utilize a sort of double check here- the buddy system. “I took these rules from the chemistry lab; we always have two operators working on the machine on the same time, never anyone working alone.” That buddy check also requires they check each other for protective gear. “Just like in rock climbing or mountain biking, it is important to make sure your partner is safe.” He says they don’t keep records for employees wearing protective gear, but they do have an incident report system. “If any sort of incident takes place, we look at what happened, how could we have prevented it and what we could change,” says Dr. Roggen.

He says they have been utilizing some of these principles for a while; it just wasn’t until recently that they started thinking in terms of the HACCP conceptual framework. While some of those steps in the process seem obvious, and it is very likely that many cannabis processors already utilize them in their standard operating procedures and quality controls, utilizing the HACCP scheme can help provide structure and additional safeguards in production.

Israeli Cannabis Brand Tikun Olam Expands to US

By Aaron G. Biros
2 Comments

Tikun Olam is a Jewish concept that addresses social policy, promoting acts of kindness to better society. In Hebrew, it literally means, “repair of the world.” The company by the same name, Tikun Olam Ltd, and now in the United States as T.O. Global LLC, was the first medical cannabis provider in Israel back in 2007. Working with patients, doctors and nurses in clinical trials, they developed 16 strains over the last decade that target alleviating symptoms of specific ailments.

Tel Aviv, Israel, where Tikun Olam has a dispensary

In November 2016, they launched their United States brand, Tikun, in the Delaware medical cannabis program with their partner, First State Compassion Center, a vertically integrated business of cultivation, extraction and retail in Wilmington. After the success of their pilot program, Tikun announced their expansion into the Nevada market with their licensed partner, CW Nevada LLC. Tikun is leveraging its experience with clinical trials and medical research to launch a line of cannabis products focused on health and wellness in the United States. According to Stephan Gardner, chief marketing officer at Tikun Olam, they have the largest collection of medical cannabis data in the world. “Tikun Olam started out as a non-profit, working to bring medication to patients in Israel,” says Gardner. “Opening nursing clinics gave us a tremendous amount of knowledge and data to work on the efficacy of strains developed specifically for targeting symptoms associated with certain conditions.” For example, their strain, Avidekel, was developed years ago as the first high-CBD strain ever created.

cannabis close up
The strain Avidekel being grown in Israel.

In a single-strain extraction, Avidekel has been used to successfully mitigate the symptoms associated with neurological conditions, like epilepsy in children, and they have the data to demonstrate that efficacy. “The American market needs some sort of guidance on how these cannabinoid and terpene profiles in certain strains can truly assist patients,” says Gardner. “We have been tracking and monitoring our patients with clinical and observational data in one, six month and annual follow ups, which are data we can use to guide the needs in the US.”

Their expansion strategy focuses heavily on the health benefits of their strains, not necessarily targeting the recreational market. “As a wellness brand in Nevada, we are positioned to work first and foremost in the medical market,” says Gardner. “Our wellness brand can cater to people looking for homeopathic remedies for things like inflammation issues, sleep disorders or pain relief for example,” says Gardner. “You will not see us going out there catering to the truly recreational market; the benefits of what our strains can do is marketed from a wellness perspective.” A cannabis product with high-THC percentages is not unique, says Gardner, but their approach using the entourage effect and proven delivery mechanisms is. “While higher THC might appeal to the rec market, that is not exactly how we will promote and position ourselves,” says Gardner. “We want to be a dominant force in the wellness market.”

Best practices include quality control protocols

That effort requires working within the US regulatory framework, which can be quite complicated compared to their experience in Israel. “We have to understand the Israeli market and American market are completely different due to the regulatory regimes each country has in place,” says Gardner. “We understand the efficacy of these products and want to educate customers on how they might benefit. We don’t want to make claims looking to cure anything, but we found in our data that a lot of symptoms in different ailments, like cancer, PTSD, Crohn’s disease, colitis and IBS, can be alleviated by strains we developed.” In addition to the medical research, they are bringing their intellectual property, cultivation methodologies, evidence-based scientific collaboration and best practices to their partners in the US.

So for Tikun’s expansion in the US, they want to get a medical dialogue going. “We will launch a fully accredited AMA [American Medical Association] program, educating medical practitioners, giving the doctors the understanding of the capabilities of cannabis and what our strains can do,” says Gardner. “We will also share our observational data with doctors so they can work to better guide their patients.” Right now, they are working on the education platform in their pilot program in Delaware. “We plan on using that as a platform to expand into other markets like Nevada,” says Gardner. “And we will be launching the Tikun brand in the Washington market this summer.” Based on the high demand they saw in the Delaware market, Gardner says they plan to launch six unique strains in the American market, with delivery mechanisms like vape products, tinctures, lozenges and topicals in addition to dried flower.

dry cannabis plants
Rows of cannabis plants drying and curing before processing.

While Tikun expands throughout the United States, their sights are set on global expansion, living up to the true meaning of the concept Tikun Olam. They entered a strategic partnership with a licensed producer based in Toronto, bringing their strains, including Avidekel, to the Canadian market. The company they are partnering with, MedReleaf, recently filed for an initial public offering (IPO) on the Toronto stock exchange. Tikun Olam is actively seeking to expand in other parts of the world as well.

Chris English
The Practical Chemist

Accurate Detection of Residual Solvents in Cannabis Concentrates

By Chris English
1 Comment
Chris English

Edibles and vape pens are rapidly becoming a sizable portion of the cannabis industry as various methods of consumption popularize beyond just smoking dried flower. These products are produced using cannabis concentrates, which come in the form of oils, waxes or shatter (figure 1). Once the cannabinoids and terpenes are removed from the plant material using solvents, the solvent is evaporated leaving behind the product. Extraction solvents are difficult to remove in the low percent range so the final product is tested to ensure leftover solvents are at safe levels. While carbon dioxide and butane are most commonly used, consumer concern over other more toxic residual solvents has led to regulation of acceptable limits. For instance, in Colorado the Department of Public Health and Environment (CDPHE) updated the state’s acceptable limits of residual solvents on January 1st, 2017.

Headspace Analysis

Figure 1: Shatter can be melted and dissolved in a high molecular weight solvent for headspace analysis (HS). Photo Courtesy of Cal-Green Solutions.

Since the most suitable solvents are volatile, these compounds are not amenable to HPLC methods and are best suited to gas chromatography (GC) using a thick stationary phase capable of adequate retention and resolution of butanes from other target compounds. Headspace (HS) is the most common analytical technique for efficiently removing the residual solvents from the complex cannabis extract matrix. Concentrates are weighed out into a headspace vial and are dissolved in a high molecular weight solvent such as dimethylformamide (DMF) or 1,3-dimethyl-3-imidazolidinone (DMI). The sealed headspace vial is heated until a stable equilibrium between the gas phase and the liquid phase occurs inside the vial. One milliliter of gas is transferred from the vial to the gas chromatograph for analysis. Another approach is full evaporation technique (FET), which involves a small amount of sample sealed in a headspace vial creating a single-phase gas system. More work is required to validate this technique as a quantitative method.

Gas Chromatographic Detectors

The flame ionization detector (FID) is selective because it only responds to materials that ionize in an air/hydrogen flame, however, this condition covers a broad range of compounds. When an organic compound enters the flame; the large increase in ions produced is measured as a positive signal. Since the response is proportional to the number of carbon atoms introduced into the flame, an FID is considered a quantitative counter of carbon atoms burned. There are a variety of advantages to using this detector such as, ease of use, stability, and the largest linear dynamic range of the commonly available GC detectors. The FID covers a calibration of nearly 5 orders of magnitude. FIDs are inexpensive to purchase and to operate. Maintenance is generally no more complex than changing jets and ensuring proper gas flows to the detector. Because of the stability of this detector internal standards are not required and sensitivity is adequate for meeting the acceptable reporting limits. However, FID is unable to confirm compounds and identification is only based on retention time. Early eluting analytes have a higher probability of interferences from matrix (Figure 2).

Figure 2: Resolution of early eluting compounds by headspace – flame ionization detection (HS-FID). Chromatogram Courtesy of Trace Analytics.

Mass Spectrometry (MS) provides unique spectral information for accurately identifying components eluting from the capillary column. As a compound exits the column it collides with high-energy electrons destabilizing the valence shell electrons of the analyte and it is broken into structurally significant charged fragments. These fragments are separated by their mass-to-charge ratios in the analyzer to produce a spectral pattern unique to the compound. To confirm the identity of the compound the spectral fingerprint is matched to a library of known spectra. Using the spectral patterns the appropriate masses for quantification can be chosen. Compounds with higher molecular weight fragments are easier to detect and identify for instance benzene (m/z 78), toluene (m/z 91) and the xylenes (m/z 106), whereas low mass fragments such as propane (m/z 29), methanol (m/z 31) and butane (m/z 43) are more difficult and may elute with matrix that matches these ions. Several disadvantages of mass spectrometers are the cost of equipment, cost to operate and complexity. In addition, these detectors are less stable and require an internal standard and have a limited dynamic range, which can lead to compound saturation.

Regardless of your method of detection, optimized HS and GC conditions are essential to properly resolve your target analytes and achieve the required detection limits. While MS may differentiate overlapping peaks the chances of interference of low molecular weight fragments necessitates resolution of target analytes chromatographically. FID requires excellent resolution for accurate identification and quantification.