Tag Archives: extract

extractiongraphic

The Four Pillars of Cannabis Processing

By Christian Sweeney
2 Comments
extractiongraphic

Cannabis extraction has been used as a broad term for what can best be described as cannabis processing. A well-thought-out cannabis process goes far beyond just extraction, largely overlapping with cultivation on the front-end and product development on the back-end1. With this in mind, four pillars emerge as crucial capabilities for developing a cannabis process: Cultivation, Extraction, Analytics and Biochemistry.

The purpose and value of each pillar on their own is clear, but it is only when combined that each pillar can be optimized to provide their full capacities in a well-designed process. As such, it is best to define the goals of each pillar alone, and then explain how they synergize with each other.

At the intersection of each pillar, specific technology platforms exist that can effectively drive an innovation and discovery cycle towards the development of ideal products.Cultivation is the foundation of any horticultural process, including cannabis production. Whether the goal be to convert pigments, flavors or bioactive compounds into a usable form, a natural process should only utilize what is provided by the raw material, in this case cannabis flower. That means cultivation offers a molecular feedstock for our process, and depending on our end goals there are many requirements we may consider. These requirements start as simply as mass yield. Various metrics that can be used here include mass yield per square foot or per light. Taken further, this yield may be expressed based not only on mass, but the cannabinoid content of the plants grown. This could give rise to a metric like CBD or THC yield per square foot and may be more representative of a successful grow. Furthermore, as scientists work to learn more about how individual cannabinoids and their combinations interact with the human body, cultivators will prioritize identifying cultivars that provide unique ratios of cannabinoids and other bioactive compounds consistently. Research into the synergistic effect of terpenes with cannabinoids suggests that terpene content should be another goal of cultivation2. Finally, and most importantly, it is crucial that cultivation provide clean and safe materials downstream. This means cannabis flower free of pesticides, microbial growth, heavy metals and other contaminants.

Extraction is best described as the conversion of target molecules in cannabis raw material to a usable form. Which molecules those are depends on the goals of your product. This ranges from an extract containing only a pure, isolated cannabinoid like CBD, to an extract containing more than 100 cannabinoids and terpenes in a predictable ratio. There are countless approaches to take in terms of equipment and process optimization in this space so it is paramount to identify which is the best fit for the end-product1. While each extraction process has unique pros and cons, the tunability of supercritical carbon dioxide provides a flexibility in extraction capabilities unlike any other method. This allows the operator to use a single extractor to create extracts that meet the needs of various product applications.

Analytics provide a feedback loop at every stage of cannabis production. Analytics may include gas chromatography methods for terpene content3 or liquid chromatography methods for cannabinoids 3, 4, 5. Analytical methods should be specific, precise and accurate. In an ideal world, they can identify the compounds and their concentrations in a cannabis product. Analytics are a pillar of their own due simply to the efforts required to ensure the quality and reliability of results provided as well as ongoing optimization of methods to provide more sensitive and useful results. That said, analytics are only truly harnessed when paired with the other three pillars.

extractiongraphic
Figure 1: When harnessed together the pillars of cannabis processing provide platforms of research and investigation that drive the development of world class products.

Biochemistry can be split into two primary focuses. Plant biochemistry focuses back towards cultivation and enables a cannabis scientist to understand the complicated pathways that give rise to unique ratios of bioactive molecules in the plant. Human biochemistry centers on how those bioactive molecules interact with the human endocannabinoid system, as well as how different routes of administration may affect the pharmacokinetic delivery of those active molecules.

Each of the pillars require technical expertise and resources to build, but once established they can be a source of constant innovation. Fig. 1 above shows how each of these pillars are connected. At the intersection of each pillar, specific technology platforms exist that can effectively drive an innovation and discovery cycle towards the development of ideal products.

For example, at the intersection of analytics and cultivation I can develop raw material specifications. This sorely needed quality measure could ensure consistencies in things like cannabinoid content and terpene profiles, more critically they can ensure that the raw material to be processed is free of contamination. Additionally, analytics can provide feedback as I adjust variables in my extraction process resulting in optimized methods. Without analytics I am forced to use very rudimentary methods, such as mass yield, to monitor my process. Mass alone tells me how much crude oil is extracted, but says nothing about the purity or efficiency of my extraction process. By applying plant biochemistry to my cultivation through the use of analytics I could start hunting for specific phenotypes within cultivars that provide elevated levels of specific cannabinoids like CBC or THCV. Taken further, technologies like tissue culturing could rapidly iterate this hunting process6. Certainly, one of the most compelling aspects of cannabinoid therapeutics is the ability to harness the unique polypharmacology of various cannabis cultivars where multiple bioactive compounds are acting on multiple targets7. To eschew the more traditional “silver bullet” pharmaceutical approach a firm understanding of both human and plant biochemistry tied directly to well characterized and consistently processed extracts is required. When all of these pillars are joined effectively we can fully characterize our unique cannabis raw material with targeted cannabinoid and terpene ratios, optimize an extraction process to ensure no loss of desirable bioactive compounds, compare our extracted product back to its source and ensure we are delivering a safe, consistent, “nature identical” extract to use in products with predictable efficacies.

Using these tools, we can confidently set about the task of processing safe, reliable and well characterized cannabis extracts for the development of world class products.


[1] Sweeney, C. “Goal-Oriented Extraction Processes.” Cannabis Science and Technology, vol 1, 2018, pp 54-57.

[2] Russo, E. B. “Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects.” British Journal of Pharmacology, vol. 163, no. 7, 2011, pp. 1344–1364.

[3] Giese, Matthew W., et al. “Method for the Analysis of Cannabinoids and Terpenes in Cannabis.” Journal of AOAC International, vol. 98, no. 6, 2015, pp. 1503–1522.

[4] Gul W., et al. “Determination of 11 Cannabinoids in Biomass and Extracts of Different Varieties of Cannabis Using high-Performance Liquid Chromatography.” Journal of AOAC International, vol. 98, 2015, pp. 1523-1528.

[5] Mudge, E. M., et al. “Leaner and Greener Analysis of Cannabinoids.” Analytical and Bioanalytical Chemistry, vol. 409, 2017, pp. 3153-3163.

[6] Biros, A. G., Jones, H. “Applications for Tissue Culture in Cannabis Growing: Part 1.” Cannabis Industry Journal, 13 Apr. 2017, www.cannabisindustryjournal.com/feature_article/applications-for-tissue-culture-in-cannabis-growing-part-1/.

[7] Brodie, James S., et al. “Polypharmacology Shakes Hands with Complex Aetiopathology.” Trends in Pharmacological Sciences, vol. 36, no. 12, 2015, pp. 802–821.

A More Effective and Efficient Approach to Purer Cannabidiol Production Using Centrifugal Partition Chromatography

By Lauren Pahnke
1 Comment

Many physicians today treat their patients with cannabidiol (CBD, Figure 1), a cannabinoid found in cannabis. CBD is more efficacious over traditional medications, and unlike delta-9 tetrahydrocannbinol (THC), the main psychoactive compound in cannabis, CBD has no psychoactive effects. Researchers have found CBD to be an effective treatment for conditions such as cancer pain, spasticity in multiple sclerosis, and Dravet Syndrome, a form of epilepsy.

CBD is still considered an unsafe drug under federal law, but to meet the medical demand, 17 states in the US recently passed laws allowing individuals to consume CBD for medical purposes. A recent survey found that half of medicinal CBD users rely on the substance by itself for treatment. As doctors start using CBD to treat more patients, the demand for CBD is only expected to rise, and meeting that demand can pose challenges for manufacturers who are not used to producing such high quantities of CBD. Furthermore, as CBD-based drugs become more popular, the US Food and Drug Administration (FDA) will likely require manufacturers to demonstrate they can produce pure, high-quality products.

cannabidiol
Figure 1. The structure of cannabidiol, one of 400 active compounds found in cannabis.

Most manufacturers use chromatography techniques such as high performance liquid chromatography (HPLC) or flash chromatography to isolate compounds from natural product extracts. While these methods are effective for other applications, they are not, however, ideal for CBD isolate production. Crude cannabis oil contains some 400 potentially active compounds and requires pre-treatment prior to traditional chromatography purification. Both HPLC and flash chromatography also require silica resin, an expensive consumable that must be replaced once it is contaminated due to irreversible absorption of compounds from the cannabis extract. All of these factors limit the production capacity for CBD manufacturers.

Additionally, these chromatography methods use large quantities of solvents to elute natural compounds, which negatively impacts the environment.

A Superior Chromatography Method

Centrifugal partition chromatography (CPC) is an alternative chromatography method that can help commercial CBD manufacturers produce greater quantities of pure CBD more quickly and cleanly, using fewer materials and generating less toxic waste. CPC is a highly scalable CBD production process that is environmentally and economically sustainable.

The mechanics of a CPC run are analogous to the mechanics of a standard elution using a traditional chromatography column. While HPLC, for instance, involves eluting cannabis oil through a resin-packed chromatography column, CPC instead elutes the oil through a series of cells embedded into a stack of rotating disks. These cells contain a liquid stationary phase composed of a commonly used fluid such as water, methanol, or heptane, which is held in place by a centrifugal force. A liquid mobile phase migrates from cell to cell as the stacked disks spin. Compounds with greater affinity to the mobile phase are not retained by the stationary phase and pass through the column faster, whereas compounds with a greater affinity to the stationary phase are retained and pass through the column slower, thereby distributing themselves in separate cells (Figure 2).

Figure 2- CPC
Figure 2. How CPC isolates compounds from complex, natural mixtures. As the column spins, the mobile phase (yellow) moves through each cell in series. The compounds in the mobile phase (A, B, and C) diffuse into the stationary phase (blue) at different rates according to their relative affinities for the two phases.

A chemist can choose a biphasic solvent system that will optimize the separation of a target compound such as CBD to extract relatively pure CBD from a cannabis extract in one step. In one small-scale study, researchers injected five grams of crude cannabis oil low in CBD content into a CPC system and obtained 205 milligrams of over 95% pure CBD in 10 minutes.

Using a liquid stationary phase instead of silica imbues CPC with several time and cost benefits. Because natural products such as raw cannabis extract adhere to silica, traditional chromatography columns must be replaced every few weeks. On the other hand, a chemist can simply rinse out the columns in CPC and reuse them. Also, unlike silica columns, liquid solvents such as heptane used in CPC methods can be distilled with a rotary evaporator and recycled, reducing costs.

Environmental Advantages of CPC

The solvents used in chromatography, such as methanol and acetonitrile, are toxic to both humans and the environment. Many environmentally-conscious companies have attempted to replace these toxic solvents with greener alternatives, but these may come with drawbacks. The standard, toxic solvents are so common because they are integral for optimizing purity. Replacing a solvent with an alternative could, therefore, diminish purity and yield. Consequently, a chemist may need to perform additional steps to achieve the same quality and quantity achievable with a toxic solvent. This produces more waste, offsetting the original intent of using the green solvent.

CPC uses the same solvents as traditional chromatography, but it uses them in smaller quantities. Furthermore, as previously mentioned, these solvents can be reused. Hence, the method is effective, more environmentally-friendly, andeconomically feasible.

CPC’s Value in CBD Production

As manufacturers seek to produce larger quantities of pure CBD to meet the demand of patients and physicians, they will need to integrate CPC into their purification workflows. Since CPC produces a relativelyduct on a larger scale, it is equipped to handle the high-volume needs of a large manufacturer. Additionally, because it extracts more CBD from a given volume of raw cannabis extract, and does not use costly silica or require multiple replacement columns, CPC also makes the process of industrial-scale CBD production economically sustainable. Since it also uses significantly less solvent than traditional chromatography, CPC makes it financially feasible to make the process of producing CBD more environmentally-friendly.

Suggested Reading:

CPC 250: Purification of Cannabidiol from Cannabis sativa

Introduction to Centrifugal Partition Chromatography

extraction equipment

The Ever-Growing Importance of Protecting Cannabis Extraction Innovations

By Alison J. Baldwin, Brittany R. Butler, Ph.D., Nicole E. Grimm
1 Comment
extraction equipment

With legalization of cannabis for medicinal and adult use occurring rapidly at the state level, the industry is seeing a sharp increase in innovative technologies, particularly in the area of cannabis extraction. Companies are developing novel extraction methods that are capable of not only separating and recovering high yields of specific cannabinoids, but also removing harmful chemicals (such as pesticides) from the concentrate. While some extraction methods utilize solvents, such as hydrocarbons, the industry is starting to see a shift to completely non-solvent based techniques or environmentally friendly solvents that rely on, for example, CO2, heat and pressure to create a concentrate. The resulting cannabis concentrate can then be consumed directly, or infused in edibles, vape pens, topicals and other non-plant based consumption products. With companies continually seeking to improve existing extraction equipment, methods and products, it is critical for companies working in this area to secure their niche in the industry by protecting their intellectual property (IP).

extraction equipment
Extraction can be an effective form of remediating contaminated cannabis

Comprehensive IP protection for a business can include obtaining patents for innovations, trademarks to establish brand protection of goods and services, copyrights to protect logos and original works, trade dress to protect product packaging, as well as a combination of trade secret and confidentiality agreements to protect proprietary information and company “know-how” from leaking into the hands of competitors. IP protection in the cannabis space presents unique challenges due to conflicting state and federal law, but for the most part is available to cannabis companies like any other company.

Federal trademark protection is currently one of the biggest challenges facing cannabis companies in the United States. A trademark or service mark is a word, phrase, symbol or design that distinguishes the source of goods or services of one company from another company. Registering a mark with the U.S. Patent and Trademark Office (USPTO) provides companies with nationwide protection against another company operating in the same space from also using the mark.

As many in the industry have come to discover, the USPTO currently will not grant a trademark or service mark on cannabis goods or services. According to the USPTO, since cannabis is illegal federally, marks on cannabis goods and services cannot satisfy the lawful use in commerce requirement of the Lanham Act, the statute governing federal trademark rights. Extraction companies that only manufacture cannabis-specific equipment or use cannabis-exclusive processes will likely be unable to obtain a federal trademark registration and will need to rely on state trademark registration, which provides protection only at the state-level. However, extractors may be able to obtain a federal trademark on their extraction machines and processes that can legitimately be applied to non-cannabis plants. Likewise, companies that sell cannabis-infused edibles may be able to obtain a federal trademark on a mark for non-cannabis containing edibles if that company has such a product line.

Some extraction companies may benefit from keeping their innovations a trade secretSince the USPTO will not grant marks on cannabis goods and services, a common misconception in the industry is that the USPTO will also not grant patents on cannabis inventions. But, in fact, the USPTO will grant patents on a seemingly endless range of new and nonobvious cannabis inventions, including the plant itself. (For more information on how breeders can patent their strains, see Alison J. Baldwin et al., Protecting Cannabis – Are Plant Patents Cool Now? Snippets, Vol. 15, Issue 4, Fall 2017, at 6). Unlike the Lanham Act, the patent statute does not prohibit illegal activity and states at 35 U.S.C. § 101 that a patent may be obtained for “any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof.”

For inventions related to extraction equipment, extraction processes, infused products and even methods of treatment with concentrated formulations, utility patents are available to companies. Utility patents offer broad protection because all aspects related to cannabis extraction could potentially be described and claimed in the same patent. Indeed, there are already a number of granted patents and published patent applications related to cannabis extraction. Recently, U.S. Patent No. 9,730,911 (the ‘911 patent), entitled “Cannabis extracts and methods of preparing and using same” that granted to United Cannabis Corp. covers various liquid cannabinoid formulations containing very high concentrations of tetrahydrocannabinolic acid (THCa), tetrahydrocannabinol (THC), cannabidiol (CBD), THCa and cannabidiolic acid, THC and CBD, and CBD, cannabinol (CBN), and THC. For example, claim 1 of the ‘911 patent recites:

A liquid cannabinoid formulation, wherein at least 95% of the total cannabinoids is tetrahydrocannabinolic acid (THCa).Properly crafted non-disclosure agreements can help further ensure that trade secrets remain a secret indefinitely.

Although the ‘911 patent only covers the formulations, United Cannabis Corp. has filed a continuation application that published as US2017/0360745 on methods for relieving symptoms associated with a variety of illnesses by administering one or more of the cannabinoid formulations claimed in the ‘911 patent. This continuation application contains the exact same information as the ‘911 patent and is an example of how the same information can be used to seek complete protection of an invention via multiple patents.

An example of a patent application directed to solvent-based extraction methods and equipment is found in US20130079531, entitled “Process for the Rapid Extraction of Active Ingredients from Herbal Materials.” Claim 1 of the originally filed application recites:

A method for the extraction of active ingredients from herbal material comprising: (i) introducing the herbal material to a non-polar or mildly polar solvent at or below a temperature of 10 degrees centigrade and (ii) rapidly separating the herbal material from the solvent after a latency period not to exceed 15 minutes.

Claim 12, covered any equipment designed to utilize the process defined in claim 1.

Although now abandoned, the claims of this application were not necessarily limited to cannabis, as the claims were directed to extracting active ingredients from “herbal materials.”

Other patents involve non-toxic extraction methods utilizing CO2, such as Bionorica Ethics GMBH’s U.S. Patent No. 8,895,078, entitled “Method for producing an extract from cannabis plant matter, containing a tetrahydrocannabinol and a cannabidiol and cannabis extracts.” This patent covers processes for producing cannabidiol from a primary extract from industrial hemp plant material.

There have also been patents granted to cannabis-infused products, such as U.S. Patent No. 9,888,703, entitled “Method for making coffee products containing cannabis ingredients.” Claim 1 of this patent recites:

A coffee pod consisting essentially of carbon dioxide extracted THC oil from cannabis, coffee beans and maltodextrin.

Despite the USPTO’s willingness to grant cannabis patents, there is an open question currently regarding whether they can be enforced in a federal court (the only courts that have jurisdiction to hear patent cases). However, since utility patents have a 20-year term, extractors are still wise to seek patent protection of the innovations now.

Another consideration in seeking patent protection for novel extraction methods and formulations is that the information becomes public knowledge once the patent application publishes. As this space becomes increasingly crowded, the ability to obtain broader patents will decline. Therefore, some extraction companies may benefit from keeping their innovations a trade secret, which means that the secret is not known to the public, properly maintained and creates economic value by way of being a secret. Properly crafted non-disclosure agreements can help further ensure that trade secrets remain a secret indefinitely.

Regardless of the IP strategy extractors choose, IP protection should be a primary consideration for companies in the cannabis industry to ensure the strongest protection possible both now and in the future.

Cannabis-Infused Wine Comes to California in 2018

By Aaron G. Biros
No Comments

Rebel Coast Winery announced this week the launch of the world’s first cannabis-infused, alcohol-removed wine. The company’s THC-infused Sauvignon Blanc, available only in California, will hit dispensary shelves in 2018.

Co-founders Alex Howe and Chip Forsythe

According to the press release, they plan to be fully compliant with California’s new regulations for the cannabis industry, hence the lack of alcohol in the product, which is a requirement under the state’s new manufacturing rules. “Rebel Coast’s grapes are grown in Sonoma County – California’s wine capital – and fermented through a traditional winemaking process,” reads the press release. “Rebel Coast removes the wine’s alcohol and infuses each bottle of its premium Sauvignon Blanc with 16 milligrams of organic tetrahydrocannabinol (THC)…” In addition to the THC infusion, they also add terpenes to the final product, giving it the cannabis fragrance.

According to Alex Howe, co-founder of Rebel Coast, the winery is in Sonoma, but they’re waiting to see where they’ll be licensed to extract, infuse and package the final product. “The winery is in Sonoma, we make the wine, and remove the alcohol there,” says Howe. “We’re currently waiting for licensing transfer approval in two locations, one in San Bernardino, the other West Sacramento, and exploring an option to infuse in San Benito County with a currently licensed location.” They plan to co-package under a third party license and seek a Type N license for extraction with non-volatile solvents.

Rebel Coast has partnered with a fully licensed outdoor grower, and is looking for an extractor that will be able to handle their volume needs. With regard to their infusion and extraction process, Howe says they combine clear distillate with a surfactant to make the THC liquid soluble and fast acting.

He expects the full infusion and packaging operations to be up and running by early 2018. “The San Bernardino and West Sacramento locations were previously licensed for infusion, packaging, and manufacturing, but with purchase of the building, the change in ownership has caused us to wait for the license to change ownerships too.”

“We’ve continued our disruptive approach to craft the world’s first cannabis-infused, alcohol-free wine,” says Chip Forsythe, co-founder and chief executive officer of Rebel Coast. “We wanted to excite the rebellious spirit in Americans through innovation, so we took two world-class California products – marijuana and wine – and created a proprietary process that resulted in a delicious, crisp and elegantly crafted Sauvignon Blanc that’s teed up to be a game changer for the wine and cannabis industries.”

They plan to start shipping product in early 2018, as well as distribute to over 500 dispensaries throughout the state, via Green Reef Distributing, a licensed cannabis distributor that represents wine and spirit accounts for other CBD products. Later in 2018, Rebel Coast plans on rolling out cannabis-infused Rosé and champagne, as well as CBD-infused wines. In the press release the company teases their products will be available in other legal states in the coming months.

California Manufacturing Regulations: What You Need To Know

By Aaron G. Biros
No Comments

In late November, California released their proposed emergency regulations for the cannabis industry, ahead of the full 2018 medical and adult use legalization for the state. We highlighted some of the key takeaways from the California Bureau of Cannabis Control’s regulations for the entire industry earlier. Now, we are going to take a look at the California Department of Public Health (CDPH) cannabis manufacturing regulations.

According to the summary published by the CDPH, business can have an A-type license (for products sold on the adult use market) and an M-type license (products sold on the medical market). The four license types in extraction are as follows:

  • Type 7: Extraction using volatile solvents (butane, hexane, pentane)
  • Type 6: Extraction using a non-volatile solvent or mechanical method
    (food-grade butter, oil, water, ethanol, or carbon dioxide)
  • Type N: Infusions (using pre-extracted oils to create edibles, beverages,
  • capsules, vape cartridges, tinctures or topicals)
  • Type P: Packaging and labeling only

As we discussed in out initial breakdown of the overall rules, California’s dual licensing system means applicants must get local approval before getting a state license to operate.

The rules dictate a close-loop system certified by a California-licensed engineer when using carbon dioxide or a volatile solvent in extraction. They require 99% purity for hydrocarbon solvents. Local fire code officials must certify all extraction facilities.

In the realm of edibles, much like the rule that Colorado recently implemented, infused products cannot be shaped like a human, animal, insect, or fruit. No more than 10mg of THC per serving and 100mg of THC per package is allowed in infused products, with the exception of tinctures, capsules or topicals that are limited to 1,000 mg of THC for the adult use market and 2,000 mg in the medical market. This is a rule very similar to what we have seen Washington, Oregon and Colorado implement.

On a somewhat interesting note, no cannabis infused products can contain nicotine, caffeine or alcohol. California already has brewers and winemakers using cannabis in beer and wine, so it will be interesting to see how this rule might change, if at all.

CA Universal Symbol (JPG)

The rules for packaging and labeling are indicative of a major push for product safety, disclosure and differentiating cannabis products from other foods. Packaging must be opaque, cannot resemble other foods packaged, not attractive to children, tamper-evident, re-sealable if it has multiple servings and child-resistant. The label has to include nutrition facts, a full ingredient list and the universal symbol, demonstrating that it contains cannabis in it. “Statute requires that labels not be attractive to individuals under age 21 and include mandated warning statements and the amount of THC content,” reads the summary. Also, manufacturers cannot call their product a candy.

Foods that require refrigeration and any potentially hazardous food, like meat and seafood, cannot be used in cannabis product manufacturing. They do allow juice and dried meat and perishable ingredients like milk and eggs as long as the final product is up to standards. This will seemingly allow for baked goods to be sold, as long as they are packaged prior to distribution.

Perhaps the most interesting of the proposed rules are requiring written standard operating procedures (SOPs) and following good manufacturing practices (GMPs). Per the new rules, the state will require manufacturers to have written SOPs for waste disposal, inventory and quality control, transportation and security.

Donavan Bennett, co-founder and CEO of the Cannabis Quality Group

According to Donavan Bennett, co-founder and chief executive officer of the Cannabis Quality Group, California is taking a page from the manufacturing and life science industry by requiring SOPs. “The purpose of an SOP is straightforward: to ensure that essential job tasks are performed correctly, consistently, and in conformance with internally approved procedures,” says Bennett. “Without having robust SOPs, how can department managers ensure their employees are trained effectively? Or, how will these department managers know their harvest is consistently being grown? No matter the employee or location.” California requiring written SOPs can potentially help a large number of cannabis businesses improve their operations. “SOPs set the tempo and standard for your organization,” says Bennett. “Without effective training and continuous improvement of SOPs, operators are losing efficiency and their likelihood of having a recall is greater.”

Bennett also says GMPs, now required by the state, can help companies keep track of their sanitation and cleanliness overall. “GMPs address a wide range of production activities, including raw material, sanitation and cleanliness of the premises, and facility design,” says Bennett. “Auditing internal and supplier GMPs should be conducted to ensure any deficiencies are identified and addressed. The company is responsible for the whole process and products, even for the used and unused products which are produced by others.” Bennett recommends auditing your suppliers at least twice annually, checking their GMPs and quality of raw materials, such as cannabis flower or trim prior to extraction.

“These regulations are only the beginning,” says Bennett. “As the consumer becomes more educated on quality cannabis and as more states come online who derives a significant amount of their revenue from the manufacturing and/or life science industries (e.g. New Jersey), regulations like these will become the norm.” Bennett’s Cannabis Quality Group is a provider of cloud quality management software for the cannabis industry.

“Think about it this way: Anything you eat today or any medicine you should take today, is following set and stringent SOPs and GMPs to ensure you are safe and consuming the highest quality product. Why should the cannabis industry be any different?”

Soapbox

Terpene Reconstitution: This Oak Barrel Is Not Your Answer

By Dr. Zacariah Hildenbrand
3 Comments

I’m not much of an oenophile but I recently came across a very interesting set of documentaries about sommeliers, which are experts on the science of wine and, most importantly, how wines are to be paired with food. What struck me as the most fascinating topic pertained to how mistakes made in the vineyard could be concealed by the barrel in which the wine is stored. For example, if the weather conditions throughout the season had been particularly tumultuous, and you end with sub-optimal grapes that are lacking complexity, then you can compensate for this by aging the wine in a variety of different oak barrels to enhance the flavor. To me, this is synonymous with the way that I’ve seen cannabis concentrates being handled, particularly with respect to terpenes. More specifically, it has recently become somewhat fashionable to supplement cannabis extracts with commercially available terpenes to reestablish an aroma profile that is most representative of the original stock material. Taken one step further, I have even heard of hemp extracts being supplemented with terpenes to achieve a particular strain phenotype, which I cannot imagine pans out very well. In my opinion, this is a very bad idea for two reasons:

One, cannabis is incredibly complex and can contain over 100 different terpene molecules, which can collectively act as anti-inflammatories (Chen et al., 2014), anti- microbial agents (Russo, 2011), sleep aids (Silva et al., 2007), bronchodilators (Falk et al., 1990), and even insulin regulators (Kim et al., 2014). So let’s say that you get your stock material tested and the laboratory screens the product for the top 25 most-prevalent terpenes: alpha- and beta-pinenes, linalool, limonene, beta-myrcene, etc. At that point you utilize this information to supplement your extraction product with these terpenes. However, you still may be missing information about other important molecules such as trans-2-pinanol, alpha-bisabolene and alloaromadendrene that are produced at extremely low, yet therapeutically relevant concentrations in the plant. So essentially with the limited information of the terpenes actually present in your stock material, you would be trying to rebuild a puzzle with only a small fraction of the pieces. Even Ben Affleck’s character in the movie ‘The Accountant’ can’t effectively pull this off.

An example of some commercially available terpenes on the market

Secondarily, not all commercially available terpenes are created equal. I’ll be the first to admit that I don’t have decades of experience vetting the quality of terpenes currently on the market; however, the several times that I have thrown samples into the GC-FID (Gas Chromatograph equipped with a Flame Ionization Detector) I have been unpleasantly surprised. Expecting beta-caryophyllene and detecting caryophyllene oxide is frustrating and in my opinion, such inaccuracies are wrong and should not be accepted as colloquialisms.

The moral of the story here is that in order to produce premium cannabis extracts/concentrates, the stock material needs to be handled with extreme care in order to retain the bouquet of terpenes in their natural ratios. This is incredibly important given the volatile nature of terpenes and their seemingly ephemeral, yet vital, nature in cannabis. Thankfully in this bourgeoning industry there are a number of extraction professionals who are delicately navigating the balance between art and science to produce premium products that are incredibly terpene-rich. However, for every alchemyst there is also someone trying to circumvent nature and while as a scientist I am inherently in favor of experimentation, I am also an admirer of natural processes.


Enforcement of Intellectual Property Rights for Cannabis Put to Test in Federal Court

By Dr. Travis Bliss
4 Comments

A number of cannabis businesses have pursued federal intellectual property protection for their cannabis-related innovations, such as U.S. patents that protect novel cannabis plant varieties, growing methods, extraction methods, etc. Enforcement of such federal IP rights requires that the IP owner file suit in federal court asserting those rights against another cannabis company. However, given that cannabis is still illegal under federal law, the industry is uncertain about whether a federal court will actually enforce cannabis-related IP rights. This question might be answered soon.

The potential impact of this case goes way beyond the two parties involvedOrochem Technologies, Inc. filed a lawsuit in federal court in the Northern District of Illinois on September 27, 2017, seeking to assert and enforce trade secret rights against Whole Hemp Company, LLC. According to the complaint, Orochem is a biotechnology company that uses proprietary separation methods to extract and purify cannabidiol (CBD) from industrial hemp in a way that produces a solvent-free and THC-free CBD product in commercially viable quantities.

The complaint goes on to say that Whole Hemp Company, which does business as Folium Biosciences, is a producer of CBD from industrial hemp and that Folium engaged Orochem to produce a THC-free CBD product for it. According to the allegations in the complaint, Folium used that engagement to gain access to and discover the details of Orochem’s trade secret method of extracting CBD so that it could take the process and use it at their facility.

The complaint provides a detailed story of the events that allegedly transpired, which eventually led to an Orochem employee with knowledge of the Orochem process leaving and secretly starting to work for Folium, where he allegedly helped Folium establish a CBD production line that uses Orochem’s trade secret process. When Orochem learned of these alleged transgressions, it filed the lawsuit, claiming that Folium (and the specific employee) had misappropriated its trade secret processes for extracting and purifying CBD.

While the particular facts of this case are both interesting and instructive for companies operating in the cannabis industry, the potential impact of this case goes way beyond the two parties involved.

If it moves forward, this case will likely provide a first glimpse into the willingness of federal courts to enforce IP rights that relate to cannabis. Orochem is asserting a violation of federal IP rights established under the federal Defend Trade Secrets Act (DTSA) and is asserting those rights in federal district court. As a result, the federal district court judge will first need to decide whether a federal court can enforce federal IP rights when the underlying intellectual property relates to cannabis.

If the court ultimately enforces these federal trade secret rights, it could be a strong indication that other federal IP rights, such as patent rights, would also be enforceable in federal court. Since the outcome of this case will likely have a far reaching and long lasting impact on how the cannabis industry approaches and deals with intellectual property, it’s a case worth watching.

Cannabis-Infused Beer Goes Mainstream

By Aaron G. Biros
No Comments

Lagunitas Brewing today unveiled a new beer infused with cannabis, making it the first large national brewery to experiment with cannabis. Lagunitas, now owned by Heineken, announced the launch of their “Supercritical Ale,” an IPA brewed with terpenes extracted from cannabis.

The brewery chose to partner with AbsoluteXtracts and CannaCraft, based in California, for their cannabis extract and will use hops from Yakima, Washington. “We’ve long known about the close connection between cannabis and hops,” reads their website. “Now Lagunitas is excited to partner with a like-minded neighbor in Sonoma County, AbsoluteXtracts, to close the gap further with tandem innovations on the topic.” Hops and cannabis belong in the same taxonomic family, Cannabinaceae, and they also have a number of physical similarities, which helps explain the “close connection” they are referring to. The website says the beer will only be available in California—for now. According to Fortune Magazine, the terpenes come from two strains, Blue Dream and Girl Scout Cookies (known as GSC in some states).

The name “Supercritical” comes from the state that carbon dioxide is best used as a solvent for extracting compounds from plants. Terpenes are responsible for the aromatic properties of plants, giving hops the piney and citrusy flavors that come in IPAs, and giving cannabis the same flavors and smells as well. Limonene, for example, is a cyclic terpene molecule that gives us a citrusy smell and flavor.

Coalition brewing Co.’s Two Flowers IPA

They’re not the first brewery to experiment with cannabis-infused beer; smaller craft breweries have been doing it for some time now. Coalition Brewing Co., based in Portland, Oregon, sells a cannabis-infused beer called Two Flowers IPA, with 3mg of cannabidiol (CBD) in a 12oz glass. Dad and Dudes Breweria, based in Aurora, Colorado, also put out a CBD-infused beer last year, called General Washington’s Secret Stash. According to Westword, Dad and Dudes was the first brewery to receive federal approval for a CBD-infused beer, but since the DEA declared cannabis oil illegal last winter, the Alcohol and Tobacco Tax and Trade Bureau rescinded their approval.

The common denominator between these three beers is that none of them contain THC, the popular psychoactive ingredient in cannabis. Perhaps Lagunitas is taking a safer approach with regard to federal legality by only using terpenes, not CBD, and only offering it in state. Coalition’s Two Flowers IPA is also only available in Oregon, but does, however, contain CBD. Check out the video on Lagunitas’ Supercritical Ale below.

Soapbox

Clear vs. Pure: How Fallacies and Ignorance of Extraction Misrepresent the Cannabis Flower

By Dr. Markus Roggen
15 Comments

Demand for cannabis extracts, in particular vaping products, is at an all-time high. People want good oil, and they want to know something about the quality of it. It is therefore time to take a step back and consider the process from plant to cartridge. What is the current industry standard for cannabis extraction, what constitutes quality and where might we need to make some adjustments?

Right now, “clear” oil is hot. Customers have been led to believe that a pale gold extract is synonymous with the best possible cannabis concentrate, which is not necessarily the case. Producing a 95% pure THC extract with a translucent appearance is neither a great scientific feat nor a good representation of the whole cannabis flower. Moreover, it runs counter to the current trend of all-natural, non-processed foods and wellness products.

“My carrots are organic and fresh from the farmers market, my drink has no artificial sweeteners and my honey is raw, but my cannabis oil has undergone a dozen steps to look clear and still contains butane.”Cannabis is a fascinating plant. It is the basis of our livelihood, but more importantly, it enhances the quality of life for patients. The cannabis plant offers a plethora of medicinally interesting compounds. THC, CBD and terpenes are the most popular, but there are so many more. As of the most recent count, there are 146 known cannabinoids1. Cannabinoids are a group of structurally similar molecules2, including THC and CBD, many of which have shown biological activity3.

Then there are terpenes. These are the smaller molecules that give cannabis its distinct smell and flavor, over 200 of which have been identified in cannabis4. But wait, there’s more. The cannabis plant also produces countless other metabolites: flavonoids, alkaloids, phenols and amides5. All these components mixed together give the often-cited entourage effect6,7.

Current industry standards for cannabis oil extraction and purification stand in marked contrast to the complexity of the plant’s components. Due to an unsophisticated understanding of the extraction process and its underlying chemistry, cannabis oil manufacturers frequently produce oil of low quality with high levels of contamination. This necessitates further purifications and clean up steps that remove such contaminants unfortunately along with beneficial minor plant compounds. If one purifies an extract to a clear THC oil, one cannot also offer the full spectrum of cannabinoids, terpenes and other components. Additionally, claiming purities around 95% THC and being proud of it, makes any self-respecting organic chemist cringe8.

Precise control of extraction conditions leads to variable, customized concentrates. THC-A crumble, terpene-rich vape oil, THC sap (from left to right).

The labor-intensive, multi-step extraction process is also contrary to “the clean-label food trend”, which “has gone fully mainstream”9. Exposing the cannabis flower and oil to at least half a dozen processing steps violates consumer’s desire for clean medicine. Furthermore, the current practice of calling supercritical-CO2-extracted oils solvent-less violates basic scientific principles. Firstly, CO2 is used as a solvent, and secondly, if ethanol is used to winterize10, this would introduce another solvent to the cannabis oil.

We should reconsider our current extraction practices. We can offer cannabis extracts that are free of harmful solvents and pesticides, give a better, if not full, representation of the cannabis plant and meet the patients’ desire for clean medicine. Realizing extracts as the growth-driver they are11 will make us use better, fresher starting materials12. Understanding the underlying science and learning about the extraction processes will allow us to fine-tune the process to the point that we target extract customized cannabis concentrates13. Those, in turn, will not require additional multi-step purification processes, that destroys the basis of the entourage effect.

The cannabis industry needs to invest and educate. Better extracts are the result of knowledgeable, skilled people using precise instruments. Backroom extraction with a PVC pipe and a lighter should be horror stories of the past. And only when the patient knows how their medicine is made can they make educated choices. Through knowledge, patients will understand why quality has its price.

In short, over-processing to make clear oil violates both the plant’s complexity and consumers’ desires. Let us strive for pure extracts, not clear. Our patients deserve it.


[1] Prof. Meiri; lecture at MedCann 2017

[2] ElSohly, Slade, Life Sciences 2005, 539

[3] Whiting, et. al., JAMA. 2015, 2456

[4] Andre, Hausman, Guerriero, Frontiers in Plant Science 2016, 19

[5] Hazekamp, et. al., Chemistry of Cannabis Chapter 3.24; 2010 Elsevier Ltd.

[6] Ben-Shabat, et al.; Eur J Pharmacol. 1998, 23

[7] Mechoulam, et al.; Nat Prod Rep. 1999, 131

[8] Medical and Research Grade chemicals are generally of purities exceeding 99.9%

[9] Bomgardner, Chemical & Engineering News 2017, 20

[10] Winterization is the industry term for what is correctly referred to as precipitation.

[11] Year-over changes to market shares in Colorado 2015 to 2016: Concentrates 15% to 23%; Flower 65% to 57%, BDS Analytics, Marijuana Market Executive Report, 2017

[12] Further reading about the whole extraction process: B. Grauerholz, M. Roggen; Terpene and Testing Magazine, July/Aug. 2017

[13] Further reading about optimizing CO2 extraction: M. Roggen; Terpene and Testing Magazine, May/June 2017, 35

PA Announces First 12 Grower/Processor Permit Winners

By Aaron G. Biros
1 Comment

The Pennsylvania Department of Health announced today the first 12 winners of growing and processing permits for the state’s medical cannabis program. At first glance, it appears those who won the permits have teams with experience in successful cannabis operations elsewhere in the country. The permit winners now have six months to become operational, according to a press release.

The list of permit winners by region

According to that press release, John Collins, director of the Pennsylvania Office of Medical Marijuana, received 457 applications in total, with 177 prospective grower/processors and 280 for dispensaries. “With today’s announcement, we remain on track to fulfill the Wolf Administration’s commitment to deliver medical marijuana to patients in 2018,” says Collins. “The applications from the entities receiving permits were objectively reviewed by an evaluation team made up of members from across commonwealth agencies.”

A sample score card for the applicants

In the populous Southeast region of Pennsylvania, grower/processor permits were awarded to Prime Wellness of Pennsylvania, LLC, and Franklin Labs, LLC. Prime Wellness is a Connecticut-based enterprise. According to Steve Schain, Esq., attorney at the Hoban Law Group, Franklin Labs includes team members from Garden State Dispensary, a successful medical cannabis operation in New Jersey.

Two of the businesses that won permits are actually from Illinois, not Pennsylvania. GTI Pennsylvania, LLC (Green Thumb Industries), has a strong presence in Illinois and Nevada. AES Compassionate Care LLC lists their business state as Illinois as well.

Steve Schain, Esq. practicing at the Hoban law Group

“Based on the first phase award of grower/processor licensees both the strength and weakness of Pennsylvania’s program has been highlighted,” says Schain. “Many licensee recipients are affiliated with existing national marijuana-related businesses with excellent track records for operating in a transparent, compliant and profitable manner.” The applications were rated on a scorecard out of 1,000 points. “Unfortunately missing from this initial phase license winners are purely regional enterprises who may have been unable to compete with national concerns’ resources and checkbooks.” According to Schain, some of the more significant areas on the scorecard reflect a diversity plan, community impact statement, business history and capacity to operate, capital requirements and operational timetable. Capital requirements are the applicants’ demonstrable financial resources comprised of at least $2 million in capital and $500,000 in cash. All of the growers are required to grow indoors, not in a greenhouse or on an outdoor farm.

There is also a ten-day appeals process for scorecards that will undoubtedly be utilized by companies that were not successful in their bids. The next phase, according to Schain, of Pennsylvania’s Medical Marijuana Program regards “Clininical Registrants” in which grow/processor and dispensary licensure will be awarded to eight applicants, which, if able to satisfy requirements including demonstrating $15 million in capital, will be authorized to open up to six dispensary locations.