Tag Archives: culture

Ellice Ogle headshot

Concentrate On a Food Safety Culture In Your Workplace

By Ellice Ogle
No Comments
Ellice Ogle headshot

In A Culture of Food Safety: A Position Paper (2018)the Global Food Safety Initiative (GFSI) defines food safety culture as the “shared values, beliefs, and norms that affect mind-set and behavior toward food safety in, across, and throughout an organization.” In other words, food safety culture in your workplace is the “this is how we do things around here.”

A food safety culture needs to be relentlessly communicated – everyone needs to know it is his or her job, not just a dusty slogan on the wall or a whisper down the halls.Building a strong food safety culture is particularly relevant to the cannabis workplace because of the unique history of the workers and the unique needs of the consumers. The cannabis industry is special in that it was an industry before it became regulated. As such, there are many workers in the industry who have a deep passion for cannabis products, but with experience rooted in working within only a few official standards. Thus, the behavior and mind-set of workers in the cannabis industry must adjust to new regulations. However, even currently, standards are ever changing and vary from state to state; this causes further confusion and inconsistency for you and your workers. On top of that, now that cannabis is legalized in certain pockets, cannabis reaches a larger, wider audience. This population includes consumers most vulnerable to foodborne illness such as people with immunocompromised systems, the elderly, the pregnant or the young. These consumers in particular need and deserve access to safe cannabis products every experience. Therefore, it is that much more important to develop a strong food safety culture in the workplace to promote safe, quality cannabis large-scale production for the larger, wider audience.

To achieve a food safety culture, GFSI emphasizes the vision and mission of the business, the role of the leaders in the organization, and the continuity of communication and training. GFSI also emphasizes that these components are interrelated and all are needed to strengthen a food safety culture. Food safety culture components can be simplified into: 1) things you believe, 2) things you say, and 3) things you do.“this is how we do things around here.”

Things You Believe

Food safety culture starts from the top, with the executive team and senior managers. It is this group that dictates the vision and mission of the business and decides to include food safety and quality as a part of this guiding star. Moreover, it is this group that commits to the support for food safety by investing the time, money and resources. The message then has to spread from the executive team and senior managers to an interdepartmental team within the workplace. That way, the values of food safety can be further shared to front-line workers during onboarding and/or continuous training. To restart a food safety culture, a town hall can be a useful tool to discuss priorities in the workplace. Overall, it is important to have every worker believe in producing safe food and that every worker is a part of and has ownership of contributing to the food safety culture at your workplace (GFSI, 2018).

Things You Say

A food safety culture needs to be relentlessly communicated – everyone needs to know it is his or her job, not just a dusty slogan on the wall or a whisper down the halls. The Food and Drug Administration (FDA) has a saying that “if it’s not written down, it didn’t happen.” Thus, the guidelines for a food safety culture need to be embedded in the policies, programs and procedures; and these guidelines need to be a part of training from day one and supplemented with periodic reminders. For effectiveness, make the communication engaging, relevant and simple – use your workers to pose for posters, use digital tools such as memes. In his presentation at the 2015 Food Safety Consortium, Frank Yiannas, vice president of food safety at Walmart, says “How many of you created training videos that you show the desired behavior once? You should probably show the behavior more than once and by a few different employees so that when they see it, they see multiple people in the video doing it and that’s the social norm.” By sending a consistent message, a food safety culture can flourish in your workplace.A food safety culture does not happen once; a food safety culture is a long-term commitment with continuous improvement.

Things You Do

A food safety culture does not happen once; a food safety culture is a long-term commitment with continuous improvement. Periodic evaluation of food safety metrics and alignment with business goals contribute to maintaining a food safety culture – it is useful to learn from successes as well as mistakes. In the same presentation mentioned above, Yiannas discusses “Learning from the wrong way [mistakes] lessens the likelihood that we will become complacent” where he defines complacency as “a feeling of quiet security, often while unaware of some potential danger or defect that lurks ahead.” Without the constant commitment, businesses can falter in their food safety and cause costly mistakes – whether that be recalls or illnesses or worse. By not becoming complacent and emphasizing constant accountability, a food safety culture can thrive at your workplace and make your workplace thrive.

With the regulated cannabis industry still in its infancy, the time is now for every cannabis workplace to instill a food safety culture. Before being mandated, the cannabis industry can rally for food safety because it is the right thing to do. With participation from each workplace, the industry as a whole can be united in producing safe product and be better positioned to change stigmas.

Total Yeast & Mold Count: What Cultivators & Business Owners Need to Know

By Parastoo Yaghmaee, PhD, Parastoo Yaghmaee, PhD
2 Comments

Editor’s note: This article should serve as a foundation of knowledge for yeast and mold in cannabis. Beginning in January 2018, we will publish a series of articles focused entirely on yeast and mold, discussing topics such as TYMC testing, preventing yeast and mold in cultivation and treatment methods to reduce yeast and mold.


Cannabis stakeholders, including cultivators, extractors, brokers, distributors and consumers, have been active in the shadows for decades. With the legalization of recreational adult use in several states, and more on the way, safety of the distributed product is one of the main concerns for regulators and the public. Currently, Colorado1, Nevada and Canada2 require total yeast and mold count (TYMC) compliance testing to evaluate whether or not cannabis is safe for human consumption. As the cannabis industry matures, it is likely that TYMC or other stringent testing for yeast and mold will be adopted in the increasingly regulated medical and recreational markets.

The goal of this article is to provide general information on yeast and mold, and to explain why TYMC is an important indicator in determining cannabis safety.

Yeast & Mold

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

Yeast and mold are members of the fungi family. Fungus, widespread in nature, can be found in the air, water, soil, vegetation and in decaying matter. The types of fungus found in different geographic regions vary based upon humidity, soil and other environmental conditions. In general, fungi can grow in a wide range of pH environments and temperatures, and can survive in harsh conditions that bacteria cannot. They are not able to produce their own food like plants, and survive by breaking down material from their surroundings into nutrients. Mold cannot thrive in an environment with limited oxygen, while yeast is able to grow with or without oxygen. Most molds, if grown for a long enough period, can be detected visually, while yeast growth is usually detected by off-flavor and fermentation.

Due to their versatility, it is rare to find a place or surface that is naturally free of fungi or their spores. Damp conditions, poor air quality and darker areas are inviting environments for yeast and mold growth.

Cannabis plants are grown in both indoor and outdoor conditions. Plants grown outdoors are exposed to wider ranges and larger populations of fungal species compared to indoor plants. However, factors such as improper watering, the type of soil and fertilizer and poor air circulation can all increase the chance of mold growth in indoor environments. Moreover, secondary contamination is a prevalent risk from human handling during harvest and trimming for both indoor and outdoor-grown cannabis. If humidity and temperature levels of drying and curing rooms are not carefully controlled, the final product could also easily develop fungi or their growth by-product.

 What is TYMC?

TYMC, or total yeast and mold count, is the number of colony forming units present per gram of product (CFU/g). A colony forming unit is the scientific means of counting and reporting the population of live bacteria or yeast and mold in a product. To determine the count, the cannabis sample is plated on a petri dish which is then incubated at a specific temperature for three to five days. During this time, the yeast and mold present will grow and reproduce. Each colony, which represents an individual or a group of yeast and mold, produces one spot on the petri dish. Each spot is considered one colony forming unit.

Why is TYMC Measured?

TYMC is an indicator of the overall cleanliness of the product’s life cycle: growing environment, processing conditions, material handling and storage facilities. Mold by itself is not considered “bad,” but having a high mold count, as measured by TYMC, is alarming and could be detrimental to both consumers and cultivators. 

Aspergillus species niger
Photo: Carlos de Paz, Flickr

The vast majority of mold and yeast present in the environment are indeed harmless, and even useful to humans. Some fungi are used commercially in production of fermented food, industrial alcohol, biodegradation of waste material and the production of antibiotics and enzymes, such as penicillin and proteases. However, certain fungi cause food spoilage and the production of mycotoxin, a fungal growth by-product that is toxic to humans and animals. Humans absorb mycotoxins through inhalation, skin contact and ingestion. Unfortunately, mycotoxins are very stable and withstand both freezing and cooking temperatures. One way to reduce mycotoxin levels in a product is to have a low TYMC.

Aspergillus flavus on culture.
Photo: Iqbal Osman, Flickr

Yeast and mold have been found to be prevalent in cannabis in both current and previous case studies. In a 2017 UC Davis study, 20 marijuana samples obtained from Northern California dispensaries were found to contain several yeast and mold species, including Cryptococcus, Mucor, Aspergillus fumigatus, Aspergillus niger, and Aspergillus flavus.3 The same results were reported in 1983, when marijuana samples collected from 14 cannabis smokers were analyzed. All of the above mold species in the 2017 study were present in 13 out of 14 marijuana samples.4

Aspergillus species niger, flavus, and fumigatus are known for aflatoxin production, a type of dangerous mycotoxin that can be lethal.5 Once a patient smokes and/or ingests cannabis with mold, the toxins and/or spores can thrive inside the lungs and body.6, 7 There are documented fatalities and complications in immunocompromised patients smoking cannabis with mold, including patients with HIV and other autoimmune diseases, as well as the elderly.8, 9, 10, 11

For this reason, regulations exist to limit the allowable TYMC counts for purposes of protecting consumer safety. At the time of writing this article, the acceptable limit for TYMC in cannabis plant material in Colorado, Nevada and Canada is ≤10,000 CFU/g. Washington state requires a mycotoxin test.12 California is looking into testing for specific Aspergillus species as a part of their requirement. As the cannabis industry continues to grow and advance, it is likely that additional states will adopt some form of TYMC testing into their regulatory testing requirements.

References:

  1. https://www.colorado.gov/pacific/sites/default/files/Complete%20Retail%20Marijuana%20Rules%20as%20of%20April%2014%202017.pdf
  2. http://laws-lois.justice.gc.ca/eng/acts/f-27/
  3. https://www.ucdmc.ucdavis.edu/publish/news/newsroom/11791
  4. Kagen SL, Kurup VP, Sohnle PG, Fink JN. 1983. Marijuana smoking and fungal sensitization. Journal of Allergy & Clinical Immunology. 71(4): 389-393.
  5. Centre for Disease control and prevention. 2004 Outbreak of Aflatoxin Poisoning – Eastern and central provinces, Kenya, Jan – July 2004. Morbidity and mortality weekly report.. Sep 3, 2004: 53(34): 790-793
  6. Cescon DW, Page AV, Richardson S, Moore MJ, Boerner S, Gold WL. 2008. Invasive pulmonary Aspergillosis associated with marijuana use in a man with colorectal cancer. Diagnosis in Oncology. 26(13): 2214-2215.
  7. Szyper-Kravits M, Lang R, Manor Y, Lahav M. 2001 Early invasive pulmonary aspergillosis in a leukemia patient linked to aspergillus contaminated marijuana smoking. Leukemia Lymphoma 42(6): 1433 – 1437.
  8. Verweii PE, Kerremans JJ, Voss A, F.G. Meis M. 2000. Fungal contamination of Tobacco and Marijuana. JAMA 2000 284(22): 2875.
  9. Ruchlemer R, Amit-Kohn M, Raveh D, Hanus L. 2015. Inhaled medicinal cannabis and the immunocompromised patient. Support Care Cancer. 23(3):819-822.
  10. McPartland JM, Pruitt PL. 1997. Medical Marijuana and its use by the immunocompromised. Alternative Therapies in Health and Medicine. 3 (3): 39-45.
  11. Hamadeh R, Ardehali A, Locksley RM, York MK. 1983. Fatal aspergillosis associated with smoking contaminated marijuana, in a marrow transplant recipient. Chest. 94(2): 432-433.
  12. http://apps.leg.wa.gov/wac/default.aspx?cite=314-55-102

Applications for Tissue Culture in Cannabis Growing: Part 2

By Aaron G. Biros, Aaron G. Biros
No Comments

In the first part of this series, we introduced Dr. Hope Jones, who took her experience in tissue culture from NASA and brought it to the cannabis industry and C4 Laboratories. We discussed some of the essential concepts behind tissue culture and defined a few basic terms like micropropagation, totipotency, explants and cloning. Now let’s get into some of the issues with cloning from mother plants and the advantages that come with using tissue culture for propagating and cultivating cannabis.

Time & Resources

Dr. Hope Jones, chief scientific officer at C4 Labs

Taking cuttings from mother plants is arguably the most popular method of propagating cannabis plants. It is a process that requires significant real estate, resources and labor. “Moms can take up a great deal of space that is not contributing directly to production,” says Dr. Jones. “I know from experience that scaling up production and/or adding new strains to the production line requires significant time and resources to raise and maintain new healthy and productive mother plants.” Each mother plant produces a limited number of clones per harvest period and over the course of her life cycle.

By using tissue culture, a cultivator can generate an almost infinite number of clones from one plant cutting. With so many growers calculating their costs-per-square-foot, micropropagation is an effective tool to save space, labor and time, thus increasing profit margins. “Just to put it in perspective: Holly Scoggins’ book Plants From Test Tubes, cites a Day Lily cultivator who uses micropropagation to produce 1,000 plants in 30 square feet of shelf space each week,” says Dr. Jones. “Using conventional methods, one would need a half-acre to produce the same amount of plants.” Cultivators can produce a much greater number of plants-per-square-foot by using micropropagation effectively.

Damage from whiteflies, thrips and powdery mildew is all visible on this sick plant.

Early Health & Vigor

Most tissue culture methods use sterilized vessels that contain sugar-rich media to support growth of plantlets before they can photosynthesize on their own. “The media is prepped, poured into vessels, and placed in an autoclave (or pressure cooker) where it is subjected to high temps and pressure to achieve proper sterility.”

The sterile environment and rich growth media supplies plantlets with an abundance of everything they need. “When plantlets emerge from culture, they are pathogen-free, with a stockpile of food and nutrient reserves that support rapid growth and vigor, superior to conventional cuttings,” says Dr. Jones.

Stress & Disease

As any grower knows, mother plants can sometimes experience stress and disease. This might come in the form under or over-watering, heat stress, spider mites, whiteflies, mold and viruses. “Any stress or infection that a mother plant is subjected too can impact progeny health and productivity in a couple of ways,” says Dr. Jones.

Powdery mildew starts with white/grey spots seen on the upper leaves surface
Tobacco Mosaic Virus symptoms can include tip curling, blotching of leaf mosaic patterning, and stunting.

For example, diseases like powdery mildew and tobacco mosaic virus are often systemic, meaning that pathogens have spread to almost every tissue in the plant. Once infected, it is impossible to completely eliminate pathogens from tissues. Therefore any cuttings made from a diseased mother plant, even if they look perfectly healthy, will also be infected and can eventually present disease symptoms like reduced productivity and/or plant death, according to Dr. Jones.

How does tissue culture get around this problem? Remember that explants (small tissue samples used as starting material) can be extracted from any part of the plant. Meristematic cells in shoot tips and leaves are the source of new plant growth. Dr. Jones explains that these cells, and the first set of primordial leaves are not connected directly to the vascular tissue, the plant’s transport system by which pathogens spread. Therefore, meristematic cells tend to be disease-free, whatever the condition of the mother. It takes a sharp blade, a dissecting microscope, and a lot of experience to learn, but as Dr. Jones explains, “harvesting explants from meristems is a routine micropropagation technique used by ‘Big Horticulture.’ One example is the strawberry. Viruses and pathogens are so prevalent that the strawberry industry must use meristematic culture to ensure pathogen free progeny.”

Epigenetics

Now let’s talk about epigenetics. We know that plants don’t have the option of physically moving away from stress or predation. Instead, they have evolved sophisticated ways of changing their own biology to adapt to and/or protect themselves. “Consider what happens to a mom exposed to a pathogen. The infected plant will start expressing (turning on) genes and making proteins that contribute to pathogen resistance,” says Dr. Jones. “These changes to gene expression are partly regulated by epigenetic modifications, chemical changes to DNA that increase or decrease the likelihood a cell will express a particular gene, but that do not actually modify the gene itself. Like annotations to a piece of music, epigenetic modifications don’t change the notes but rather how loud or soft, quickly or slowly the notes are played.”

There are more than 1,000 different viruses and mixed infections are very common

This is where it gets interesting. “Epigenetic modifications can be systemic and long lived. Plants infected by a pathogen or stressed by drought will present widespread epigenetic modifications to their DNA,” says Dr. Jones. “For an annual plant like cannabis, those modifications are relatively permanent. Thus a cutting from a mom having drought or pathogen adapted epigenetic programming will inherit that modified DNA and behave as if it were experiencing that stress, whether present or not.”

In the wild, this adaptability is critical for plant survival and reproduction, but to a grower, this is a less-than-ideal scenario. “The epigenetic modifications allowed the mother to tolerate the stress, which is great from the perspective of survival and fitness, but it comes at a cost. Some of the finite energy and resources that usually support plant growth and reproduction are instead channeled to stress response,” says Dr. Jones. This trade off results in reduction in overall plant yield and quality. “Those epigenetic changes result in a new phenotype for that mother,” says Dr. Jones. “All cuttings from her will reflect the new phenotype. This is one major mechanism underlying what many in the cannabis industry (incorrectly) call ‘genetic drift,’ or the loss of vigor over successive clonal generations.”

This is again where tissue culture can be such a game changer. The process of dedifferentiation, as explained in part 1 of this series, can rejuvenate a “tired” mother plant by inducing a kind of reboot– clearing accumulated epigenetic modifications that negatively impact progeny vigor and productivity. In the third part of this series, we will discuss the five stages of micropropagation, detailing the process of how you can grow plantlets in tissue culture. Stay tuned for more!