Tag Archives: cultivate

Did ABCann Lose The German Cannabis Bid?

By Marguerite Arnold
No Comments

In rather shocking news out of Germany on the cannabis front, it appears that Canadian LP ABcann has not been selected as one of the finalists in the country’s first tender bid to cultivate cannabis domestically.

As reported in the German press, the company has not been invited to submit an offer in the final award procedures. The reason per a company spokesman as quoted in the German media? The company proved it met the required qualification thresholds – namely it could deliver the required amount of product as required by the German government. However the amount it could produce was less than other firms being considered.

That is a strange statement, especially because the ten licenses on offer only called for a total of 2,000 kgs of production total by 2019 and 6600 kgs by 2022.

Who Is ABCann?

ABcann has been in business since 2014 in Canada, when it received one of the first cultivation licenses issued by the Canadian government. It has also been aggressively positioning itself in the German and European market this year – and in multiple ways. It got itself listed on both American and German stock exchanges by summer. The company established a subsidiary headquarters in Schönefeld as of August 2017. As late as October, the company also was appearing at industry conferences, like the IACM medical conference in Cologne, as an expected finalist in the first bid.

An ABCann facility in Canada

However, the company’s plans to build a $40 million, 10,000 square meter plant somewhere in Lusatia are now also reportedly on hold. The exact location of the plant is unknown, per German government requirements that grow facilities remain secret. That said, with a year and a half to complete construction, if given the green light even by early next year, it may be that this was the reason the company has apparently not made the cut. Or perhaps the German government did not believe the company was adequately funded. A September exercise of warrants netted the company an additional $45 million in operating cash. But with expansion plans in not only Canada and Europe, but Australia too, did the company pass the German test for liquidity?

Management changes are also afoot. As of October 1, Barry Fishman, a former Eli Lilly executive took over as CEO of ABCann Global. Ken Clement, founder of the company, announced in mid-October that he was stepping down from his position as Executive Chair of the Board to be replaced by Paul Lucas a former President and CEO of GlaxoSmithKline Canada. John Hoff, the Geschäftsführer (or CEO) of ABcann’s German subsidiary, has also recently left the company. When asked by CannabisIndustryJournal about his reasons for doing so at the Cannabis Normal conference in Berlin at the beginning of November, Hoff cited “management and creative differences” with ABcann Canada as the impetus for his recent departure.

However with the news of ABcann’s apparent loss of a front-runner position in the pending bid, such news appears to herald a bit more of a shakeup at the company, if not a refocussing of overall global strategy.

A source within the company who wished to remain anonymous also said this when contacted directly by CannabisIndustryJournal. “Our top priority currently is to acquire an import license. We also fully intend to pursue all of our plans in the German market, but we have no firm dates on the construction front.”

The State of Medical Cannabis Reform Auf Deutsch

The German medical cannabis question has certainly jerked forward over the past several years through several rough patches. This year it has gotten even stranger. And nobody is quite sure where it will end up.

The news about ABcann is also the latest episode in a very strange story that has continued to develop mostly out of sight of the public.

That bid process, which was expected to announce the winners by late summer, has now dragged on through the fall.Germany began moving forward quietly on the cannabis issue in the first decade of the century. Patients could only access the drug in basically trial mode. Most patients who qualified with a doctor’s prescription and a special permit to take the drug, could also access only Sativex (which is very expensive) or the synthetic form of the drug, dronabinol, manufactured domestically in a facility near Frankfurt. All bud cannabis was imported from Holland by Bedrocan. Strictly controlled not by German, but rather Dutch law on cannabis imports.

In 2014, the first German patients successfully sued the government to grow their own plants if their insurance companies refused coverage of the drug and they proved they could not afford alternatives.

This year, in January, the German government voted unanimously to change the law to mandate public health insurance. The law went into effect in March. Mainly driven by a desire to halt home-grow, the rules changed again. Post March 2017, patient grow rights have now been revoked. Now patients are theoretically allowed to get cannabis covered under public health insurance. In reality, the process has been difficult.

In April, the German government created a new “Cannabis Agency” under the auspices of BfArM. And BfArM in turn issued a tender bid for the country’s first domestic licences in April.

That bid process, which was expected to announce the winners by late summer, has now dragged on through the fall.

When Will The Winners Be Announced?

That too is unclear. It is very likely that the final announcement will not be made by the government until the beginning of the year – after the new government is formed. The so-called “Jamaica Coalition” – of the mainstream CDU, the Greens and the liberals (FDP) is under major pressure to address the issue of access. So far Chancellor Angela Merkel has signalled her resistance for additional changes to the new cannabis law. That said, the current situation in Germany, which is untenable for patients and doctors, as well as companies trying to enter the market and investing heavily, is unlikely to hold for even the next several years.

Problems with finding doctors and medical reimbursement under insurance have kept this patient population from growing the way it would otherwise.In late October, the news broke that two legal complaints had been unsuccessfully filed against the bid itself. Both parties’ complaints were dismissed. Yet there also appears to have been a third complaint that has actually devolved in to a real Klage – or lawsuit. Lexamed GmbH’s claim directly addresses issues expressed by many German-only firms this year. Namely that they were unfairly left out of the bid process because of a supposed lack of experience. As such it is likely to be closely watched by other existing German hopefuls.

This lawsuit has now formally delayed the announcements on the bid decision until at least after December 20th of this year, when the oral arguments will be heard in the case. A decision about the bid will go forward when this has been decided, by the beginning of 2018.

In the meantime? Cannabis imports are starting to enter the country. In late summer last year, Spektrum Cannabis, formerly MedCann GmbH, located just south of Frankfurt, received the first import licenses from the German government to bring medical cannabis into Germany from Canada. Both Aurora and Tilray were granted import licenses this fall.

There are 16 different kinds of cannabis on the market right now. And about 170 kilos of cannabis were imported into the country in the last year. There are also currently about 1,000 patients although this number is artificially low. Problems with finding doctors and medical reimbursement under insurance have kept this patient population from growing the way it would otherwise. There are easily a million patients in Germany right now who would qualify for cannabis if the system worked as it was originally intended in the legislation passed in January.

That said, despite the recent news that ABcann is “out” – at least for this round– apparently the pan-European bid process is still very much alive, despite many recent rumours that it was dead in the water. And plans also seem to be afoot for a separate and additional cultivation licensing round potentially as soon as next year. Details however are unclear and nobody either in the industry or the government is willing to be quoted or give any further information.

Protecting Innovative Strains with a Strong Intellectual Property Strategy: Part 1– Why IP & Why now?

By Dr. Travis Bliss
3 Comments

This three-part series will provide an in-depth look at intellectual property (IP) protection that is available for innovative and new varieties of cannabis. In this first installment, we will examine the reasons why cannabis breeders should adopt a strong IP strategy and look briefly at the types of IP that they should be considering. In the second and third pieces, we will look at the types of IP protection that can be used to protect innovative cannabis varieties and the unique IP issues the cannabis industry faces right now. Taken together, these articles will provide insight into IP strategies that cannabis breeders and growers can employ today to help prepare for the day that cannabis becomes legal nationally.

Why should I use IP to protect my cannabis varieties?

First and foremost, as the cannabis industry continues to move from a small, tight-knit community of breeders and growers into a ‘big-business’ industry, IP is the only way for breeders to protect the investment of time, energy and money that they put into developing new and innovative strains of cannabis. At a recent cannabis growing conference, one sentiment felt among numerous breeders was a feeling of frustration– stemming from the fact that they had spent many years developing new varieties of cannabis and, now that the industry is exploding, they are not getting recognition for all that effort. The way to avoid this issue is to protect novel varieties with IP to ensure that you are given proper credit for all of your hard work.

Moreover, an examination of industries that have strong similarities to the cannabis industry, such as other plant-based industries and ‘vice’ industries, provides compelling evidence that IP will become a main driving force in the cannabis industry as it continues to mature. For example, the fruit and hops industries have been relying upon strong plant patent and trademark protection for many years. The extremely popular Honeycrisp apple is a patented variety and the Amarillo hops variety (officially called ‘VGXP01’) is protected by both a U.S. Plant Patent and a federally registered trademark. Similarly, the alcohol and tobacco industries rely upon strong trademark and branding strategies, with many consumers being extremely brand-particular.

Additionally, there is strong evidence that the cannabis industry is primed for intellectual property protection. Since long before cannabis was legalized, consumers who were buying cannabis on the black market often sought out a particular variety from their dealer, something that becomes more prevalent as the industry continues to mature.

Why is now the time to think about IP?

First, the relevant governmental bodies have now provided some clarity as to the types of IP protection that can, and cannot be obtained for cannabis. For example, it is now clear that the U.S. Patent and Trademark Office (USPTO) will issue patents that cover new cannabis plant varieties and related innovations, such as novel growing methods. In fact, the first U.S. Plant Patent that covers a novel cannabis strain, called ‘Ecuadorian Sativa’, issued in late 2016.

Similarly, though federal trademark registration is not currently available if the product being protected is a cannabis product that is illegal under federal law. Federal trademark registration may be available to protect products related to the cannabis industry that are not themselves federally illegal (e.g., grow lights, fertilizer, etc.). Many states with legalized cannabis will grant state trademark registrations for cannabis products regardless of whether the products are viewed as illegal under current federal law. With this increased clarity, companies can now begin to formulate a comprehensive IP strategy that ties together the various types of IP protection.

Additionally, cannabis breeders and growers should look to adopt an IP strategy now because there are certain time bars that exist that may result in loss of rights if they wait. For example, as we will discuss in Part 2 of the series, patent protection can only be sought if the variety to be patented was not sold, offered for sale, or otherwise made publicly available more than one year before the patent application is filed. So if a breeder chooses to wait to seek patent protection for a new variety, the ability to ever get that protection may be lost.

The bottom line is that, to solidify their place in the market, cannabis breeders and growers should be formulating an IP strategy sooner rather than later. Those forward-thinking growers and breeders that adopt a comprehensive IP strategy up front will gain a distinct competitive advantage over competing growers and breeders down the road – an advantage that will become even more important if and when large corporations begin to move into the cannabis space. Those companies that have strong brands in place will be better equipped to survive and thrive in the face of pressure from legal teams at larger companies.

The next two installments of this series will examine the specifics of the types of IP protection that can be sought and the unique issues that the cannabis industry faces with each of them.

Legal disclaimer: The material provided in this article is for informational purposes only and not for the purpose of providing legal advice. The opinions expressed herein are the opinions of the individual author and may not reflect the opinions of the firm or any individual attorney. The provision of this information and your receipt and/or use of it (1) is not provided in the course of and does not create or constitute an attorney-client relationship, (2) is not intended as a solicitation, (3) is not intended to convey or constitute legal advice, and (4) is not a substitute for obtaining legal advice from a qualified attorney. You should not act upon any such information without first seeking qualified professional counsel on your specific matter.

Applications for Tissue Culture in Cannabis Growing: Part 2

By Aaron G. Biros
No Comments

In the first part of this series, we introduced Dr. Hope Jones, who took her experience in tissue culture from NASA and brought it to the cannabis industry and C4 Laboratories. We discussed some of the essential concepts behind tissue culture and defined a few basic terms like micropropagation, totipotency, explants and cloning. Now let’s get into some of the issues with cloning from mother plants and the advantages that come with using tissue culture for propagating and cultivating cannabis.

Time & Resources

Dr. Hope Jones, chief scientific officer at C4 Labs

Taking cuttings from mother plants is arguably the most popular method of propagating cannabis plants. It is a process that requires significant real estate, resources and labor. “Moms can take up a great deal of space that is not contributing directly to production,” says Dr. Jones. “I know from experience that scaling up production and/or adding new strains to the production line requires significant time and resources to raise and maintain new healthy and productive mother plants.” Each mother plant produces a limited number of clones per harvest period and over the course of her life cycle.

By using tissue culture, a cultivator can generate an almost infinite number of clones from one plant cutting. With so many growers calculating their costs-per-square-foot, micropropagation is an effective tool to save space, labor and time, thus increasing profit margins. “Just to put it in perspective: Holly Scoggins’ book Plants From Test Tubes, cites a Day Lily cultivator who uses micropropagation to produce 1,000 plants in 30 square feet of shelf space each week,” says Dr. Jones. “Using conventional methods, one would need a half-acre to produce the same amount of plants.” Cultivators can produce a much greater number of plants-per-square-foot by using micropropagation effectively.

Damage from whiteflies, thrips and powdery mildew is all visible on this sick plant.

Early Health & Vigor

Most tissue culture methods use sterilized vessels that contain sugar-rich media to support growth of plantlets before they can photosynthesize on their own. “The media is prepped, poured into vessels, and placed in an autoclave (or pressure cooker) where it is subjected to high temps and pressure to achieve proper sterility.”

The sterile environment and rich growth media supplies plantlets with an abundance of everything they need. “When plantlets emerge from culture, they are pathogen-free, with a stockpile of food and nutrient reserves that support rapid growth and vigor, superior to conventional cuttings,” says Dr. Jones.

Stress & Disease

As any grower knows, mother plants can sometimes experience stress and disease. This might come in the form under or over-watering, heat stress, spider mites, whiteflies, mold and viruses. “Any stress or infection that a mother plant is subjected too can impact progeny health and productivity in a couple of ways,” says Dr. Jones.

Powdery mildew starts with white/grey spots seen on the upper leaves surface
Tobacco Mosaic Virus symptoms can include tip curling, blotching of leaf mosaic patterning, and stunting.

For example, diseases like powdery mildew and tobacco mosaic virus are often systemic, meaning that pathogens have spread to almost every tissue in the plant. Once infected, it is impossible to completely eliminate pathogens from tissues. Therefore any cuttings made from a diseased mother plant, even if they look perfectly healthy, will also be infected and can eventually present disease symptoms like reduced productivity and/or plant death, according to Dr. Jones.

How does tissue culture get around this problem? Remember that explants (small tissue samples used as starting material) can be extracted from any part of the plant. Meristematic cells in shoot tips and leaves are the source of new plant growth. Dr. Jones explains that these cells, and the first set of primordial leaves are not connected directly to the vascular tissue, the plant’s transport system by which pathogens spread. Therefore, meristematic cells tend to be disease-free, whatever the condition of the mother. It takes a sharp blade, a dissecting microscope, and a lot of experience to learn, but as Dr. Jones explains, “harvesting explants from meristems is a routine micropropagation technique used by ‘Big Horticulture.’ One example is the strawberry. Viruses and pathogens are so prevalent that the strawberry industry must use meristematic culture to ensure pathogen free progeny.”

Epigenetics

Now let’s talk about epigenetics. We know that plants don’t have the option of physically moving away from stress or predation. Instead, they have evolved sophisticated ways of changing their own biology to adapt to and/or protect themselves. “Consider what happens to a mom exposed to a pathogen. The infected plant will start expressing (turning on) genes and making proteins that contribute to pathogen resistance,” says Dr. Jones. “These changes to gene expression are partly regulated by epigenetic modifications, chemical changes to DNA that increase or decrease the likelihood a cell will express a particular gene, but that do not actually modify the gene itself. Like annotations to a piece of music, epigenetic modifications don’t change the notes but rather how loud or soft, quickly or slowly the notes are played.”

There are more than 1,000 different viruses and mixed infections are very common

This is where it gets interesting. “Epigenetic modifications can be systemic and long lived. Plants infected by a pathogen or stressed by drought will present widespread epigenetic modifications to their DNA,” says Dr. Jones. “For an annual plant like cannabis, those modifications are relatively permanent. Thus a cutting from a mom having drought or pathogen adapted epigenetic programming will inherit that modified DNA and behave as if it were experiencing that stress, whether present or not.”

In the wild, this adaptability is critical for plant survival and reproduction, but to a grower, this is a less-than-ideal scenario. “The epigenetic modifications allowed the mother to tolerate the stress, which is great from the perspective of survival and fitness, but it comes at a cost. Some of the finite energy and resources that usually support plant growth and reproduction are instead channeled to stress response,” says Dr. Jones. This trade off results in reduction in overall plant yield and quality. “Those epigenetic changes result in a new phenotype for that mother,” says Dr. Jones. “All cuttings from her will reflect the new phenotype. This is one major mechanism underlying what many in the cannabis industry (incorrectly) call ‘genetic drift,’ or the loss of vigor over successive clonal generations.”

This is again where tissue culture can be such a game changer. The process of dedifferentiation, as explained in part 1 of this series, can rejuvenate a “tired” mother plant by inducing a kind of reboot– clearing accumulated epigenetic modifications that negatively impact progeny vigor and productivity. In the third part of this series, we will discuss the five stages of micropropagation, detailing the process of how you can grow plantlets in tissue culture. Stay tuned for more!

Applications for Tissue Culture in Cannabis Growing: Part 1

By Aaron G. Biros
2 Comments

Dr. Hope Jones, chief scientific officer of C4 Laboratories, believes there are a number of opportunities for cannabis growers to scale their cultivation up with micropropagation. In her presentation at the CannaGrow conference recently, Dr. Jones discussed the applications and advantages of tissue culture techniques in cannabis growing.

Dr. Hope Jones, chief scientific officer at C4 Labs

Dr. Jones’ work in large-scale plant production led her to the University of Arizona Controlled Environment Agriculture Center (CEAC) where she worked to propagate a particularly difficult plant to grow- a native orchid species- using tissue culture techniques. With that experience in tissue culture, hydroponics and controlled environments, she took a position at the Kennedy Space Center working for NASA where she developed technologies and protocols to grow crops for space missions. “I started with strawberry TC [tissue culture], because of the shelf life & weight compared with potted plants, plus you can’t really ‘water’ plants in space- at least not in the traditional way,” says Dr. Jones. “Strawberries pack a lot of antioxidants. Foods high in antioxidants, I argued, could boost internal protection of astronauts from high levels of cosmic radiation that they are exposed to in space.” That research led to a focus on cancer biology and a Ph.D. in molecular & cellular biology and plant sciences, culminating in her introduction to the cannabis industry and now with C4 Labs in Arizona.

Working with tissue culture since 2003, Dr. Jones is familiar with this technology that is fairly new to cannabis, but has been around for decades now and is widely used in the horticulture industry today. For example, Phytelligence is an agricultural biotechnology company using genetic analysis and tissue culture to help food crop growers increase speed to harvest, screen for diseases, store genetic material and secure intellectual property. “Big horticulture does this very well,” says Dr. Jones. “There are many companies generating millions of clones per year.” The Department of Plant Sciences Pomology Program at the Davis campus of the University of California uses tissue culture with the Foundation Plant Services (FPS) to eliminate viruses and pathogens, while breeding unique cultivars of strawberries.

A large tissue culture facility run in the Sacramento area that produces millions of nut and fruit trees clones a year.

First, let’s define some terms. Tissue culture is a propagation tool where the cultivator would grow tissue or cells outside of the plant itself, commonly referred to as micropropagation. “Micropropagation produces new plants via the cloning of plant tissue samples on a very small scale, and I mean very small,” says Dr. Jones. “While the tissue used in micropropagation is small, the scale of production can be huge.” Micropropagation allows a cultivator to grow a clone from just a leaf, bud, root segment or even just a few cells collected from a mother plant, according to Dr. Jones.

The science behind growing plants from just a few cells relies on a characteristic of plant cells called totipotency. “Totipotency refers to a cell’s ability to divide and differentiate, eventually regenerating a whole new organism,” says Dr. Jones. “Plant cells are unique in that fully differentiated, specialized cells can be induced to dedifferentiate, reverting back to a ‘stem cell’-like state, capable of developing into any cell type.”

Cannabis growers already utilize the properties of totipotency in cloning, according to Dr. Jones. “When cloning from a mother plant, stem cuttings are taken from the mother, dipped into rooting hormone and two to five days later healthy roots show up,” says Dr. Jones. “That stem tissue dedifferentiates and specializes into new root cells. In this case, we humans helped the process of totipotency and dedifferentiation along using a rooting hormone to ‘steer’ the type of growth needed.” Dr. Jones is helping cannabis growers use tissue culture as a new way to generate clones, instead of or in addition to using mother plants.

With cannabis micropropagation, the same principles still apply, just on a much smaller scale and with greater precision. “In this case, very small tissue samples (called explants) are sterilized and placed into specialized media vessels containing food, nutrients, and hormones,” says Dr. Jones. “Just like with cuttings, the hormones in the TC media induce specific types of growth over time, helping to steer explant growth to form all the organs necessary to regenerate a whole new plant.”

Having existed for decades, but still so new to cannabis, tissue culture is an effective propagation tool for advanced breeders or growers looking to scale up. In the next part of this series, we will discuss some of issues with mother plants and advantages of tissue culture to consider. In Part 2 we will delve into topics like sterility, genetic reboot, viral infection and pathogen protection.

Implementing Real Science in Cultivation and Extraction

By Aaron G. Biros
No Comments

Formed in 2015, Outco is a vertically integrated, licensed producer of medical cannabis in Southern California. Outco manages Outliers Collective, the first licensed dispensary continually operating in San Diego County. They operate the first licensed cultivation on Native American land in Southern California, the first cultivation building permit in Southern California and the first licensed extraction facility in San Diego County. Outco is on track to be the largest licensed producer of medical cannabis in Southern California.

Lincoln Fish, co-founder and chief executive officer of Outco
Lincoln Fish, co-founder and chief executive officer of Outco

The company prides themselves on attention to detail; the well versed team implements real science in their cultivation and extraction processes. Lincoln Fish, co-founder and chief executive officer of Outco, has more than 30 years of experience as an entrepreneur. Before entering the cannabis industry, Linc started and sold companies in the healthcare technology and nutraceutical spaces.

With construction underway at new facilities, Outco is anticipating an expanding market and higher demand.
With construction underway at new facilities, Outco is anticipating an expanding market and higher demand.

Fish’s experience with FDA regulations in nutraceuticals prepared him for running a business in such a tumultuous, highly regulated environment like cannabis. “One thing I took from the nutraceutical industry is how to present products to consumers and letting them know it is safe, effective and consistent,” says Fish. He says he noticed a serious lack of consistency in products. They tested 25 different vape cartridges, with their own oil, to find a consistent product they can use and know that consumers will safely and consistently get the same results. “There is a lot of room for more professionals and a lot of room for more science,” says Fish. “We try to position ourselves in a way that is consistent with where we think policy will go so we are very careful with recommendations from a scientific standpoint, patient information and product safety.”

Starting at a seed or cutting, plants are grown with the protection of biological control agents
Starting at a seed or cutting, plants are grown with the protection of biological control agents

According to Fish, they currently distribute cannabis products to about 75 licensed dispensaries in Orange County, San Diego and Los Angeles. With construction underway at their cultivation facility on Native American land, Fish says they plan to generate roughly 2600 pounds of cannabis each month. Gearing up for that in addition to the expanding recreational market requires some planning in advance, says Fish. Part of that plan is making sure quality controls are in place to keep consistency in the product quality and dosage. They are also actively seeking to open their distribution channels further.

One of the cultivation facilities at Outco
One of the cultivation facilities at Outco

“We are building out a full lab of our own in addition to third party testing to perform internal quality controls,” says Fish. Equipped with their own laboratory instrumentation like HPLC and GC, they hope to establish proper in-house quality controls as well as provide that resource to younger startup companies. As one of the founding partners of Canopy San Diego, an ancillary startup accelerator, Fish sees great potential in working with younger companies to get them off the ground. Fish met Outco’s vice president of extraction, Dr. Markus Roggen, at a Canopy San Diego event. It was there that they had the idea to build a startup accelerator for companies that actually touch the plant- extractors, cultivators and infused-product manufacturers, as opposed to a startup accelerator that would only help ancillary businesses.

Dr. Markus Roggen, vice president of extraction
Dr. Markus Roggen, vice president of extraction

Dr. Roggen, who is an organic chemist by training, heads up Outco’s supercritical CO2 extraction operation. “I came to the ‘art’ of cannabis extraction with an open, yet scientifically focused mind,” says Dr. Roggen. “My approach was to look past the myths and stories about extraction methods and focus on finding data, as there really wasn’t much available. I therefore, from the beginning, started to study the capabilities of our extraction equipment by chemometric methods.” Chemometrics is the science of relating measurements made on a chemical system or process to the state of the system via applications of mathematical methods. “Already the first sets of experiments showed that long-held beliefs in the cannabis community were inaccurate,” says Dr. Roggen. “For example the particle size of extracted material matters. Or that it is possible to preserve and even isolate terpenes by CO2 extraction methods.” With plans to have a full plant and analytical chemistry laboratory on site, they hope to perform more research that focuses on optimizing extraction processes.

Plant irrigation and fertigation procedures are determined via experimentation
Plant irrigation and fertigation procedures are determined via experimentation

Dr. Allison Justice leads their cultivation team with a background in greenhouse management and commercial horticulture. Dr. Justice says plants are grown, starting at a young age (seed or vegetative cutting), with the protection of biological control agents. “Biological control is a management strategy that entails the release of beneficial insects or fungi, such as parasitoids and predators, in order to suppress or regulate insect populations in greenhouses and grow rooms,” says Dr. Justice.

Dr. Allison Justice, vice president of cultivation
Dr. Allison Justice, vice president of cultivation

When implemented properly, this eliminates the need to use synthetic pesticides. “Biological control agents are not put in place to eradicate pest populations yet are applied as preventives to minimize plant damage and maintain their own populations.” They are constantly evaluating light types, spectrum and intensity to determine optimal ranges, according to Dr. Justice. They don’t use any pre-mixed “cannabis” nutrient supplements for their plants, instead they design an experiment to determine the desired levels and ratios of essential plant nutrients. “We have found it crucial to determine what ratios of nutrients the plant actually needs and by knowing this, we know how to manipulate the recipe determined by the plant’s given nutritional symptoms,” says Dr. Justice. Every type of adjustment in cultivation and extraction is based on results from experimentation rooted in legitimate science. Instead of guessing when it might be time to harvest, they use a water activity meter, logging and recording all the data to determine the appropriate time to trim and cure plants. Performing analytical testing at every step is key, says Fish.

Looking toward the recreational market, Fish sees an obvious opportunity to expand their wholesale operations substantially, with several larger new cultivation projects planned. “The key though is to produce flower and concentrate offerings with the same standards we employ for medical cannabis,” says Fish.

Soapbox

Learning from the Horticultural Industry at Cultivate’16

By Nic Easley
2 Comments

This past week, over 10,000 individuals traveled to Columbus, Ohio to attend Cultivate’16, a conference hosted by AmericanHort, an organization dedicated to leading and unifying the horticultural industry. Cultivate’16 had hundreds of vendors displaying the latest technology and equipment for greenhouse production, design and controls along with the latest innovations in software, manufacturing, automation and more.

For all of the energy surrounding the nascent cannabis industry, there was very little representation from it at Cultivate’16. Our associates encountered an estimated thirty cannabis industry professionals, compared to an estimated total of 10,000 attendees. This further compounds the reality that the cannabis industry is still a very young industry when compared with the more mature and well established industries such as conventional agriculture, finance, information technology and others.

At Cultivate’16, there was enormous potential for businesses in the cannabis industry to learn from the traditional horticultural industry. The horticultural industry has had to become extremely efficient with its capital, resources and time in a manner which the cannabis industry has not had to accommodate yet. There were automated container filling machines, cost effective nutrient solutions and greenhouses that are controlled wirelessly. Those were just a fraction of the products and systems that could save cannabis cultivators hundreds of thousands of dollars.

Horticulturalists have been forced through shrinking margins to increase their output and savings. The horticultural market is expanding at an average rate of 5% per year as opposed to the cannabis market which is currently growing at a rate of 68% year over year. Cannabis operators can still get anywhere from $1,200 to $1,400 a pound in most legal markets on the lower end. This is in comparison to basil at $4 a pound. This difference is stark. It means that cannabis cultivators are not under the same pressure to be efficient as other traditional crop cultivators. It is clear though that with increasing legalization of cannabis in both the medical and adult use markets that the price of cannabis will fall. Therefore, it would be wise for the cannabis professionals to attend events such as Cultivate’16 in greater numbers to prepare for the eventual decrease in price.

3C Consulting was present at Cultivate’16 because we understand the importance of looking to other successful industries for guidance. We were able to converse with a diverse array of vendors and business owners to further our own knowledge on the best practices to bring to the cannabis industry. To be able to learn from those that have come before you is a strength, not a weakness. Far too often the cannabis industry seeks to reinvent the wheel. It does not have to be this way.

By learning from other industries, utilizing the latest horticultural technology and becoming more cost-effective the cannabis cultivators will be able survive and thrive. It is those that prepare for turbulence that are best able to capitalize on change. In the Chinese language, the word for crisis is the same as the word for opportunity. It is wise to prepare for a crisis so that when it does occur you are able to transform it into an opportunity.