Tag Archives: controls

Soleil control panel

IoT & Environmental Controls: urban-gro Launches Soleil Technologies Portfolio

By Aaron G. Biros
No Comments
Soleil control panel

Back in November of 2017, urban-gro announced the development of their Soleil Technologies platform, the first technology line for cannabis growers utilizing Internet-of-Things (IoT). Today, urban-gro is announcing that line is now officially available.

Soleil control panel
Screenshot of the data you’d see on the Soleil control panel

The technology portfolio, aimed at larger, commercial-scale growers, is essentially a network of monitors, sensors and controls that give cultivators real-time data on things like temperature, humidity, light, barometric pressure and other key factors. The idea of using IoT and hypersensitive monitoring is not new to horticulture, food or agriculture, but this is certainly a very new development for the cannabis growing space.

sensor
Substrate sensors, used for monitoring Ph, soil moisture & electrical conductivity.

According to Brad Nattrass, chief executive officer and co-founder of urban-gro, it’s technology like this that’ll help growers control microclimates, helping them make the minor adjustments needed to ultimately improve yield and quality. “As ROI and optimized yields become increasingly important for commercial cultivators, the need for technologies that deliver rich granular data and real-time insights becomes critical,” says Nattrass. “With the ability to comprehensively sense, monitor, and control the microclimates throughout your facility in real-time, cultivators will be able to make proactive decisions to maximize yields.”

heat map
The heat map allows you to find problem microclimates throughout the grow space.

One of the more exciting aspects of this platform is the integration of sensors, and controls with automation. With the system monitoring and controlling fertigation, lighting and climate, it can detect when conditions are not ideal, which gives a cultivator valuable insights for directing pest management or HVAC decisions, according to Dan Droller, vice president of corporate development with urban-gro. “As we add more data, for example, adding alerts for when temperatures falls or humidity spikes can tell a grower to be on the lookout for powdery mildew,” says Droller. “We saw a corner of a bench get hot in the system’s monitoring, based on predefined alerts, which told us a bench fan was broken.” Hooking up a lot of these nodes and sensors with IoT and their platform allows the grower to get real-time monitoring on the entire operation, from anywhere with an Internet connection.

soleil visuals
Figures in the system, showing temperature/time, humidity/time and light voltage

Droller says using more and more sensors creates super high-density data, which translates to being able to see a problem quickly and regroup on the fly. “Cannabis growers need to maintain ideal conditions, usually they do that with a handful of sensors right now,” says Droller. “They get peace of mind based on two or three sensors sending data points back. Our technology scales to the plant and bench level, connecting all of the aggregate data in one automated system.”

In the future, urban-gro is anticipating this will lay the groundwork for using artificial intelligence to learn when controls need to be adjusted based on the monitoring. Droller hopes to see the data from environmental conditions mapped with yield and by strain type, which could allow for ultra-precise breeding based on environmental conditions. “As we add more and more data and develop the platform further, we can deliver some elements of AI in the future, with increased controls and more scientific data,” says Droller.

Cannabis Cultivation Virtual Conference

Recorded 5/23/18 – 4 hours 50 minutes – 5 presentations on growing techniques in 1 Day, all from the comfort of your home or office. Learn about Breeding, Drying, Curing, Environmental Monitoring, Lighting and Tissue Culture. Hear from industry experts such as Adam Jacques, Dr. Allison Justice, Dr. Nadia Sabeh and Dr. Hope Jones. This online event is brought to you by VividGro, CannaGrow Expo and CannabisIndustryJournal.com.

Steven Burton

3 Ways The Cannabis Industry Can Benefit By Adopting IoT Tech

By Steven Burton
No Comments
Steven Burton

The cannabis industry of the United States is unlike other horticulture markets in the country. It’s younger, less traditional and with roots in a black market, it’s no surprise that its forerunners aren’t afraid to experiment with new approaches and technology.

The rapid adoption of IoT (Internet of Things) technology is one way in particular that this new generation of producers is stepping up, and they’re beginning to reap the rewards. But to better demonstrate how significant the implementation of IoT tech can be, we’ll peek over the fence at other craft-oriented food industries—namely wine and chocolate—to discover how effective they can be long-term for serious players in the cannabis industry.

The results, as you can probably guess, are astounding.

Farm Productivity and Precision is on the Rise

IoT tech isn’t just a cool new thing for experimental growers – it’s as necessary as air in the 21st century. New and veteran farms alike are discovering ways to streamline production and enhance the quality of their crops. One of the most common implementations of IoT tech in agriculture is the installation of smart measurement tools. Remote sensors can monitor soil acidity, humidity, salt concentrations, temperature and a variety of other metrics, automating the collection of data and providing a clear picture of plant health. For many farms, like E. & J. Gallo Winery, this is a game-changer.By installing hundreds of sensors per block and upgrading to a more precise irrigation system, Gallo was able to connect moisture measurements to a central system

Before placing sensors in over 250 acres of their vineyard, Gallo could only make irrigation adjustments at the large block level. Even with careful monitoring of moisture levels, the grape yield was inconsistent in size and flavor. By installing hundreds of sensors per block and upgrading to a more precise irrigation system, Gallo was able to connect moisture measurements to a central system. The system collects the data, considers the weather forecast, and automatically irrigates small areas of the vineyard as needed to ensure all plants are optimally watered. This resulted in a more uniform crop, less water waste and more desirable grapes.

Cannabis farms are starting to pick up on this simple approach as well. Organigram, one of Canada’s leading Cannabis producers, is well aware of the benefits of this kind of automation and data collection. “All our grow rooms are helping us learn all the time,” says Matt Rogers, head of production at Organigram. “With 20 grow rooms going, we can gather as much information about these plants as you would get in a century of summers.”

Automation and precision have enabled by Gallo and Organigram to improve yield and increase precision, which has helped them achieve their well-respected status in the wine and cannabis industries.

The Supply Chain is Becoming More Transparent

As much as we would like the industry to be free of scams and crooks, there’s more than a few producers stretching the truth when it comes to labeling product. MyDx, a cannabis chemical analyzer, recently revealed that the label on the package often does not totally coincide with the product within.Protecting your brand’s reputation is a necessity and IoT tech is helping some pioneering industries do that.

For example, the most frequently tested cannabis strain, “Blue Dream”, averages a 64% difference in chemical makeup from sample to sample. Similarly, “Gorilla Glue” and “Green Crack” show as much as 83% variation from sample to sample—largely because there’s no regulation of these names.

While variation is inevitable from grower to grower, plant to plant, and even between different parts of the same plant, misleading labels and the addition of ‘fillers’ is a growing issue for edible cannabis producers, and the threat it poses to your brand isn’t minor. Protecting your brand’s reputation is a necessity and IoT tech is helping some pioneering industries do that.

Wine in China is a powerful example of how improved traceability can reduce large-scale mislabeling. Brand-name winemakers in the country face a massive problem: 70% of imported wines are counterfeits. To combat this, winemakers are attaching near-field communication (NFC) labels to imported and domestic bottles. It’s a dramatic solution, but one that’s protecting the brand of winemakers dedicated to quality and transparency.

As the legalization of cannabis spreads and coveted strains emerge, so will the availability of counterfeits—or, at the very least, less-than-truthful labeling. This has proven to be true in almost every specialty market, and adopting improved traceability tech will defend your brand and reputation from the consequences of selling a product that’s discovered to be more ‘filler’ than cannabis.

Compliance is Easily Achieved

The conversation of cannabis regulation generally revolves around age restrictions and driving while impaired, but government compliance is far more complicated – especially for facilities that create cannabis-infused food products. And here’s the frustrating part for those who must (and should) maintain a food safety plan: every time a regulation is adjusted (or every time a new variation is added in another state), facilities must be able to document changes in procedures, recipes and hazard controls. It gets complicated quickly, especially if all the documentation is kept manually.

There’s a lot to be gained by connecting your systems and products to the Internet of ThingsA central, connected system is the best way for food manufacturers to streamline and automate a variety of documentation and food safety tasks, which can mean thousands of dollars saved over months or years. Using software like Icicle, facilities can create a comprehensive data environment that’s dynamic and accessible from anywhere. Incoming measurements from connected equipment and employee records are collected and an admin dashboard allows you to see what food safety systems are thriving and which need revisiting. The records – transformed into a compliant food safety plan – can then be pulled up during audits and inspections on the spot, saving the months that companies usually spend preparing documentation.

According to Mitchell Pugh of Chewter’s Chocolates, their system “gives me a great peace of mind in the sense to know we have all our information prepared and anything that an inspector is going to ask for – whether they’re looking for one product, a general system, a certain hazard, or a bill of ingredients or materials or an allergen – is easy for us to search for it, pull it up, and find exactly what they’re looking for.”

Considering that most food manufacturers still record measurements and create food safety plans manually, this is an area where progressive companies can quickly outpace their non-automated rivals.

Whether you’re a grower, dispensary, food producer, or some other kind of cannabis professional, there’s a lot to be gained by connecting your systems and products to the Internet of Things. Which direction will you take?

control the room environment

Environmental Controls: The Basics

By Vince Sebald
No Comments
control the room environment

The outside environment can vary widely depending on where your facility is located. However, the internal environment around any activity can have an effect on that activity and any personnel performing the activity, whether that’s storage, manufacturing, testing, office work, etc. These effects can, in turn, affect the product of such activities. Environmental control strategies aim to ensure that the environment supports efforts to keep product quality high in a manner that is economical and sensible, regardless of the outside weather conditions.

For this article, let us define the “environment” as characteristics related to the room air in which an activity is performed, setting aside construction and procedural conditions that may also affect the activity. Also, let us leave the issue of managing toxins or potent compounds for another time (as well as lighting, noise, vibration, air flow, differential pressures, etc). The intent here is to focus on the basics: temperature, humidity and a little bit on particulate counts.

Temperature and humidity are key because a non-suitable environment can result in the following problems:

  • Operator discomfort
  • Increased operator error
  • Difficulty in managing products (e.g. powders, capsules, etc)
  • Particulate generation
  • Degradation of raw materials
  • Product contamination
  • Product degradation
  • Microbial and mold growth
  • Excessive static

USP <659> “Packaging and Storage Requirements” identifies room temperature as 20-25°C (68-77 °F) and is often used as a guideline for operations. If gowning is required, the temperature may be reduced to improve operator comfort. This is a good guide for human working areas. For areas that require other specific temperatures (e.g. refrigerated storage for raw materials), the temperature of the area should be set to those requirements.

Humidity can affect activities at the high end by allowing mold growth and at the low end by increasing static. Some products (or packaging materials) are hydroscopic, and will take on water from a humid environment. Working with particular products (e.g. powders) can also drive the requirement for better humidity control, since some powders become difficult to manage in either high or low humidity environments. For human operations without other constraints, a typical range for desirable humidity is in the range of 20 to 70% RH in manufacturing areas, allowing for occasional excursions above. As in the case of temperature, other requirements may dictate a different range.

control the room environment
In some cases, a locally controlled environment is a good option to reduce the need to control the room environment as tightly or to protect the operator.

In a typical work environment, it is often sufficient to control the temperature, while allowing the relative humidity to vary. If the humidity does not exceed the limits for the activity, then this approach is preferred, because controlling humidity adds a level of complexity (and cost) to the air handling. If humidity control is required, it can be managed by adding moisture via various humidification systems, or cooling/reheating air to remove moisture. When very low humidity is required, special equipment such as a desiccant system may be required. It should be noted that although you can save money by not implementing humidity control at the beginning, retrofitting your system for humidity control at a later time can be expensive and require a shutdown of the facility.

Good engineering practice can help prevent issues that may be caused by activities performed in inappropriately controlled environments. The following steps can help manage the process:

  • Plan your operations throughout your facility, taking into account the requirements for the temperature and humidity in each area and know what activities are most sensitive to the environment. Plans can change, so plan for contingencies whenever possible.
  • Write down your requirements in a User Requirement Specification (URS) to a level of detail that is sufficient for you to test against once the system is built. This should include specific temperature and RH ranges. You may have additional requirements. Don’t forget to include requirements for instrumentation that will allow you to monitor the temperature and RH of critical areas. This instrumentation should be calibrated.
  • Solicit and select proposals for work based on the URS that you have generated. The contractor will understand the weather in the area and can ensure that the system can meet your requirements. A good contractor can also further assist with other topics that are not within the scope of this article (particulates, differential pressures, managing heating or humidity generating equipment effects, etc).
  • Once work is completed, verify correct operation using the calibrated instrumentation provided, and make sure you add periodic calibration of critical equipment, as well as maintenance of your mechanical system(s), to your calibration and maintenance schedules, to keep everything running smoothly.

The main point is if you plan your facility and know your requirements, then you can avoid significant problems down the road as your company grows and activity in various areas increases. Chances are that a typical facility may not meet your particular requirements, and finding that out after you are operational can take away from your vacation time and peace of mind. Consider the environment, its good business!

The Necessity of Food Safety Programs in Cannabis Food Processing

By Gabe Miller
No Comments

When processing cannabis, in any form, it is critical to remember that it is a product intended for human consumption. As such, strict attention must also be paid to food safety as well. With more and more states legalizing either medical or recreational cannabis, the potential for improper processing of the cannabis triggering an illness or death to the consumer is increasing.

The FDA Food Safety Modernization Act (FSMA) is the new food safety law that has resulted in seven new regulations, many which directly or indirectly impact the production and processing of cannabis. Under FSMA regulations, food processors must identify either known or reasonably foreseeable biological, chemical or physical hazards, assess the risks of each hazard, and implement controls to minimize or prevent them. The FSMA Preventive Controls for Human Foods (PCHF) regulation contains updated food “Good Manufacturing Practices (cGMPs) that are in many cases made a requirement in a state’s medical or recreational cannabis laws. These cGMPs can be found in 21 CFR 117 Subpart B.

It is imperative that cannabis manufacturers have a number of controls in place including management of suppliers providing the raw material.Food safety risks in cannabis processing could originate from bacteria, cleaning or agricultural chemicals, food allergens or small pieces of wood, glass or metal. The hazards that must be addressed could be natural, unintentionally introduced, or even intentionally introduced for economic benefit, and all must be controlled.

It is unlikely that high heat, used in other food products to remove bad bacteria would be used in the processing of cannabis as many of its desirable compounds are volatile and would dissipate under heating conditions. Therefore, any heat treatment needs to be carefully evaluated for effectiveness in killing bacterial pathogens while not damaging the valuable constituents of cannabis. Even when products are heated above temperatures that eliminate pathogens, if the raw materials are stored in a manner that permits mold growth, mycotoxins produced by molds that have been linked to cancer could be present, even after cooking the product. Storage of raw materials might require humidity controls to minimize the risk of mold. Also, pesticides and herbicides applied during the growth and harvesting of cannabis would be very difficult to remove during processing.

It is imperative that cannabis manufacturers have a number of controls in place including management of suppliers providing the raw material. Other controls that must be implemented include proper cannabis storage, handling and processing as well as food allergen control, and equipment/facility cleaning and sanitation practices. Processing facilities must adhere to Good Manufacturing Practices (GMP’s) for food processing, including controls such as employee hand washing and clothing (captive wear, hair nets, beard nets, removal of jewelry, and foot wear) that might contribute to contamination. A Pest Control plan must be implemented to prevent fecal and pathogen contamination from vermin such as rodents, insects, or birds.

Processing facilities must be designed for proper floor drainage to prevent standing water. Processing air should be properly filtered with airflow into the cannabis processing facility resulting in a slightly higher pressure than the surrounding air pressure, from the clean process area outwards. Toilet facilities with hand washing are essential, physically separated from the process areas. Food consumption areas must also be physically separate from processing and bathroom areas and have an available, dedicated hand sink nearby. Employee training and company procedures must be effective in keeping food out of the processing area. Labels and packaging must be stored in an orderly manner and controlled to prevent possible mix-up.Cleaning of the processing equipment is critical to minimize the risk of cross contamination and microbial growth.

Written food safety operational procedures including prerequisite programs, standard operating procedures (SOP’s), etc. must be implemented and monitored to ensure that the preventive controls are performed consistently. This could be manual written logs, electronic computerized data capture, etc., to ensure processes meet or exceed FSMA requirements.

A written corrective action program must be in place to ensure timely response to food safety problems related to cannabis processing problems when they occur and must include a preventive plan to reduce the chance of recurrence. The corrective actions must be documented by written records.

Supply chain controls must be in place. In addition, a full product recall plan is required, in the event that a hazard is identified in the marketplace to provide for timely recall of the contaminated product.

Cleaning of the processing equipment is critical to minimize the risk of cross contamination and microbial growth. The processing equipment must be designed for ease of cleaning with the minimum of disassembly and should conform to food industry standards, such as the 3-A Sanitary Standards, American Meat Institute’s Equipment Standards, the USDA Equipment Requirements, or the Baking Industry Sanitation Standards Committee (BISSC) Sanitation Standards ANSI/ASB/Z50.2-2008.

Serious food borne contaminations have occurred in the food industry, and cannabis processing is just as susceptible to foodborne contamination. These contaminations are not only a risk to consumer health, but they also burden the food processors with significant costs and potential financial liability.

Anyone processing cannabis in any form must be aware of the state regulatory requirements associated with their products and implement food safety programs to ensure a safe, desirable product for their customers.

urban-gro Launches Cannabis Industry’s First Line Of IoT Solutions

By Aaron G. Biros
No Comments

Last week at the MJBizCon, a major cannabis industry event held annually in Las Vegas, urban-gro launched the first technology line for cannabis growers utilizing Internet-of-Things (IoT). urban-gro, a cultivation technology company for commercial-scale growers, announced the launch of announced Soleil® Technologies, an integrated portfolio of hardware, software, and services that uses IoT.

“The solution suite includes per-plant sensing, environmental monitoring, machine diagnostics, fertigation management, lighting controls, inventory management, and seed-to-sale tracking,” reads the press release. IoT is essentially a network of devices embedded with sensors and software that allow the devices to connect and exchange data. IoT devices are used extensively in the food industry, including for integrated pest management, restaurant food safety and management and tracking product conditions such as temperature and humidity throughout the supply chain, among other uses.

Soleil consists of three primary lines:

  • Soleil 360 is the cloud-based software-as-a-service (SASS) platform that integrates all Soleil solutions.
  • Soleil Sense is the brand for all of urban-gro’s low-power wireless sensors that deliver data with the scale, precision and resolution needed for analytics and machine learning.
  • Soleil Controls is urban-gro’s product set for climate and irrigation controls, lighting systems, and other focused controls.

The core, low-power sensor that makes this unique was licensed from Edyza, a wireless innovator that specializes in low-power wireless grids that scale. urban-gro then developed on top of that sensor, including its cloud-based management, analytics, what the sensors detect and cover, etc., to make it ideal for cannabis growers.

According to Brad Nattrass, urban-gro’s chief executive officer, finding an IoT solution that can easily scale was a key goal for their business. “When evaluating the most advanced market-ready sensor technology available, it was crucial that we deliver a solution that can easily scale to thousands of sensors in order to satisfy the needs of large-scale commercial cultivators,” says Nattrass. “The introduction of Soleil demonstrates urban-gro’s commitment to going beyond simply supplying equipment, to truly serving our clients as an ongoing technological innovator and advisor, enabling cultivators to leverage today’s more advanced technologies to rise above the competition.”

“Cultivators will be able to monitor substrate moisture and EC (electrical conductivity) levels on a per plant basis, as well as track key environmental metrics like temperature, humidity, air movement, and probability of infestation,” reads the press release. “With multiple device options, cultivators can choose between several deployment options.” With the data hosted on the cloud, users can access it through web browsers, Android and iOS devices.

According to Jay Nichols, a representative of urban-gro, they have hired (and is hiring) code developers, product developers, etc. in order to expand this unit. Plant sensors are just one piece of the system, with the goal to automate the entire cultivation process, including controlling lights, pest management, irrigation and fertigation. They say it will be available in late Q1/early Q2.

Soapbox

The Problem With Puerto Rico’s Medical Cannabis

By Dr. Ginette M. Collazo
1 Comment

Recently Puerto Rico approved the law that regulates the production, manufacturing, dispensing and consumption of medical cannabis. Although medical cannabis was already “legal” through an executive order and was “supervised” by local regulation, there was no law to back up the industry and protect investors.

The creation and approval of laws resides in the hands of elected individuals. Expecting absolute knowledge is unrealistic, especially when we refer to cannabis as a medicine. Sadly, the lack of knowledge is affecting the patients, and an emerging industry that can be the solution to the Island’s current economic crisis.

I am in no way insinuating that Puerto Rico is the only example. I have seen this type of faulty thinking in many places, but cannabis is the perfect manifestation of this human defect. Check some of your laws, and you will find a few that nearly qualify for the same characterization.

As we can see, lack of knowledge can be dangerous. Objective, factual information needs to be shared, and our leaders need a formal education program. Patients need them to have a formal education program to better understand and regulate the drug.

The approval of this law is a significant step for the Island. Still, many Puerto Ricans are not happy with the result. The lack of legitimate information coupled with conservative views made the process an excruciating one. It took many hearings, lots of discussions and created tensions between the government and population, not because of the law, but for the reasons behind the proposed controls. Yes, it was finally approved, but with onerous restrictions that only serve as a detriment to the patient’s health, proving the need for an education program designed specifically to provide data as well as an in-depth scientific analysis of the information, then, you address the issue at hand.

Let’s take a look at some of the controls implemented and the justification for each one as stated by some members of the government.

  1. Patients are not allowed to smoke the flower in its natural state unless it is a terminal patient, or a state-designated committee approves it. Why? Because the flower is not intended for medical use (just for recreational) and the risks associated with lung cancer are too high. Vaporize it.
  2. It was proposed to ban edibles because the packaging makes it attractive for children. Edibles made it, but with the condition that the packaging is monochromatic (the use of one color), yes, insert rolling eyes here.
  3. It only allows licensed pharmacists to dispense medical cannabis at the dispensary (bud tending). The rationale? Academic Background.
  4. The new law requires a bona fide relationship between the doctor and the patient to be able to recommend medical cannabis, even if the doctor is qualified by the state and is a legitimate physician. This is contrary to their policy with other controlled substances, where a record is not required.

When there are different beliefs on a particular topic like it is with medical cannabis, you are not only dealing with the technical details of the subject; there is an emotional side to it too. Paradigms, stigma, stereotypes, beliefs and feelings affect the way we think. We let our judgment get in the way of common sense. When emotions, morals and previous knowledge are hurting objectivity, then we have to rely on scientific data and facts to issue resolution. However, when the conflict comes from opinions, we rely on common sense, and this one is scarce.

Now education: what can education do with beliefs, morals and emotional responses?

David Burns in his book Feeling Good: The New Mood Therapy discusses ten thinking errors that could explain, to those like me that want to believe this is a legitimate mistake, that there are cognitive distortions that affect the result of ours thoughts.

Now let’s analyze …

  1. There are many things wrong with this prohibition. First, the flower is natural and organic. It is the easiest to produce and the cheapest alternative for patients; there are more than 500 compounds all interdependent to make sick people feel better. There are seas of data, anecdotal information, serious studies collecting information for decades and opinions of highly educated individuals that support the consumption of flower in its natural state for medical purposes. The benefits are discarded, and personal opinions take the lead. Based on Burns’s work this is a textbook case of Disqualifying the Positive: dismissing or ignoring any positive facts. Moreover, let’s not forget the benefit for illegal growers and distributors.
  2. Keep out of reach of children, does it ring a bell? For years and years, we have consumed controlled substances, have manipulated detergent pods, bleach and so many other products that can be fatal. The warning is enough, just like is done with other hazardous Here we can notice how we can fall into the Fortune Teller Error, which believes that they know what will happen, without evidence.
  3. Not even the largest drug stores in the USA have this requirement. There is one pharmacist per shift, and a licensed pharmacist supervises pharmacy technicians. Medical cannabis is not even mentioned in current Pharmacy’s BA curricula. Most pharmacists take external courses in training institutes. On the other hand, bud tenders go through a very comprehensive certification process that covers from customer service to cash management and safety and of course all technical knowledge. If anything, a botanist (plant scientist) makes more sense. What a splendid example of magnification (make small things much larger than they deserve). This is an unnecessary requirement.
  4. The relationship between a certified doctor and patient has to be bona fide (real, honest). In practical terms, the doctor has to treat the patient for some time (sometimes six months) and have a history of the patient. Even though this sounds logical, not all doctors are certified to recommend cannabis, but all can diagnose. Are we penalizing the doctor or the patient? The only thing that you need to qualify as a patient is the condition. Besides, I had prescriptions filled for controlled medications at the drug store with no history. Why are we overgeneralizing Do we think that all doctors are frauds?