Soapbox

Give a Voice to Scientists in the Executive Suite

By Dr. Markus Roggen, Amanda Assen
2 Comments

What do Aurora Cannabis, Tilray and Pfizer all have in common? They all produce and sell products used for medicinal purposes, they are top competitors in their field and they all have statements on their websites claiming that science is one of the most important things to their business. But unlike Pfizer, Aurora and Tilray do not have any positions in the executive suite for scientists or medical personnel. This led us to wonder, why does the structure of their corporate ladder (as well as so many other cannabis companies) not align with what they claim to be their values?

According to Aurora Cannabis, “Science is at the core of what we do”.1 Look up the definition of “core” and you will get “foundational, essential, central, and enduring.”2 Sounds important. Meanwhile, Tilray’s main page states: “For the therapeutic value and risks of cannabinoid-based medicines to be fully understood, Tilray believes it is critical to evolve current scientific understanding of the field.”3

aurora logoYou would assume that somebody in the executive suite would have a position and an educational background relating to the central and enduring part of a business, right? We looked at 10 of the biggest Canadian cannabis companies, their founders’ educational backgrounds and whether there were executive positions for science, R&D or medicine (Table 1). We also looked at the same data for the top 10 biggest pharmaceutical companies (Table 2). As expected, every pharmaceutical company had upper-level (C and/or P level) positions for scientists and/or medical personnel. However, only 2 of the 10 cannabis companies had this.

tilray-logoTo figure out why this is, (as scientists) we did some research. It turns out, the consensus is scientists are bad at commercialization. Scientists are rarely successful as CEOs because they are (usually) not good at attracting customers and get confused by things like revenue models.4 As Akshat Rathi bluntly put it, “just because you are the smartest person in the building does not make you capable to run a company.” In fact, many CEOs of life science companies got to the top by pursuing business, finance, marketing or sales. In the 90s, some life science companies took a chance on scientists and hired them as CEOs, but when they hit financial turmoil, they quickly undid this.5

So maybe scientists aren’t always cut out to be the CEO of a company. But that still doesn’t explain why so few large cannabis companies have a chief scientific/medical officer, or even a president of R&D.

Maybe we are looking in the wrong place. Maybe their value of science can be demonstrated by their spending on research. Typically, a larger agricultural company will spend 9% or more on R&D, and a smaller company will spend 2-4%.6 Meanwhile, the major pharmaceutical companies we looked at spent between 12 and 25% of their revenue on R&D during their most recent fiscal year. Since a cannabis company falls somewhere in between we approximate they would spend around 9-12%.

Canopy_Growth_Corporation_logoHowever, Canopy Growth was the only company that fell into our prediction range, spending 10.5% of their revenue on R&D in 2021.7 Tied for a distant second place were Charlotte’s Web and Aurora Cannabis (a subsidiary of Tilray), spending 4.6%. At the very bottom were Tilray which only spent 0.16% on R&D and TerrAscend which spent 0.21% during their most recent fiscal year.8,9 With most of the cannabis companies, we saw a gradual decrease in R&D funding over time, which intensified with the Covid-19 pandemic.

So why the heck are these companies going on about how they value science? To give them the benefit of the doubt, maybe they do think they value science, but they don’t know how to value it.

 It’s hard for a company to take actions that show they value science if there are no voices for scientists at the executive level. After all, how can you make decisions based on science if nobody in the room understands it? Sure, we saw the argument that people who make it to the top can “learn enough science to ascend to the executive suite without much trouble”.5 But what is “enough science”? The mitochondria is the powerhouse of the cell?

This leads to our argument for putting scientists in the executive suites of cannabis companies and giving them a more powerful voice. Whereas scientists are not good at marketing, those in managerial roles tend to overly rely on intuition – even when the evidence is against them.10 For those relying on intuition, R&D is an easy target during times of crisis (like a global pandemic). Cutting costs in R&D yields a short-term immediate increase in profit and the negative impacts are often not felt until years later.11 However, cutting R&D investment is the opposite of what you should do during a time of crisis. Evidence suggests companies that maintain or even increase spending in marketing and R&D and focus on operational efficiency (such as process optimization) are the ones that will come out as the top competitors in the long run.12,13 Having a chief scientific officer or an executive for R&D with a scientific background can help sustain companies by promoting R&D during hard times and indicating what projects will be the most promising to help the company optimize their processes.

Having a scientist in the executive suite can also help keep everyone in check. “Senior execs live in a feedback loop of positive reinforcement making them unlikely to question their decisions,” according to Stefan Thomke and Gary Loveman.10 They claim the best way for those in managerial roles to avoid over relying on instinct and break out of that positive feedback loop is by “thinking like a scientist”. This involves not letting bias get in the way of truth, studying anomalies, being skeptical, developing strong hypotheses, producing hard evidence and probing cause and effect. To add to this, we think a major part of thinking like a scientist is by having at least one high up in the team. In our own company, giving equal value to scientific voices has resulted in all parties learning and thriving by making fact-based decisions.

Finally, scientists deliver! To be a scientist (with a PhD), one must master the field, find a gap in the knowledge, then fill that gap – all for little pay and no guarantee of a job at the end. This makes them dedicated workers whose main goal is to contribute something unique to their field, or in this case, their company.14 Having someone up top who is dedicated, passionate, innovative and trained to look for gaps in knowledge can be an invaluable voice in the executive suite. They are likely to point out potential money-saving solutions (i.e.: optimizing extraction conditions) that others up top may not have thought of on their own.

If you feel strongly that science is at the core of what you do, and you already know that R&D is crucial for the long-term survival of your company, you are already on the right track. In addition to this, consider giving a voice to scientists at the executive level in your company. The cannabis industry is still in its infancy. This means there is potential for R&D in more than just new product development. Basic stuff like extraction, modifying plants to be heartier against harsh conditions and pathogens, curing and safety testing processes have all barely been studied and optimized to reduce costs. These things won’t be solved by a Juris Doctor, an MBA or even an engineer, they will be solved by scientists, and it will take a scientist up top to ensure the whole company recognizes the importance of these projects.

Table 1: Top cannabis companies stats on founders and their educational backgrounds, presence of scientific executive positions and spending on research and development

Company Founders Founder’s Educational Backgrounds Science executive position? % Revenue spent on R&D
Aphria Inc.

(now owned by Tilray)

 

Cole Cacciavillani and John Cervini Cole: B. Eng

John: Born into a family greenhouse business

Chief science officer

Garry Leong: B.Sc. Chem,

M.B.A. Quality Management 15

NA
Canopy Growth Corp

 

 Bruce Linton and Chuck Rifici Bruce: Ba Public Policy, Minor: Economics. 16

Chuck: B. Eng, MBA

no 10.5% 17
Aurora Cannabis Inc.

(subsidiary of Tilray)

Terry Booth, Steve Dobler, Dale Lesack and Chris Mayerson Terry: Master Electrician18

Steve: B. Eng

Chris: Concrete business

Dale: Electrician and homebuilder

no 4.6% 19
Village Farms International Inc.

 

Michael A. DeGiglio BSc Aeronautic Science no No data available on R&D expenses
Tilray Inc

 

Brendan Kennedy, Christian Groh, Michael Blue Brendan: Ba. Architecture, Msc: Eng, MBA20

Christian: Ba. unknown, MBA21

Michael: Ba. Finance, MBA22

 

no 0.16% 23
Ayr Wellness Inc

 

Jonathan Sandelman Juris Doctor, Law Degree24

 

no No data on R&D spending available
TerrAscend Corp

 

Michael Nashat Pharm. D . Post doc in Neuroscience25 no 0.21% 26
HexoCorp

 

Sebastien St-Louis Ba. Economics, MBA 27

 

no 3.09% 28
Fire & Flower Holdings Corp

 

Trevor Fencott Ba (unknown), and Law degree29 no No data on R&D spending
Zenabis Global Inc

(now owned by hexo corp)

Rick Brar, Mark Catroppa, Monty Sikka Rick: Ba. (unknown)

Mark: Ba. Finance 30

Monty: Ba Accounting and Finance31

 

Chief science Officer:

Natasha Ryz PhD experimental medicine.32

 

 

NA

Table 2: Top pharmaceutical companies founders and their educational background, presence of executive positions for scientists and spending on R&D

Company Current Executives Educational Background Science executive positions? % Revenue spent on R&D
Amgen Robert A. Bradway BSc. Biology, MBA33

 

Chief Medical officer: Darryl Sleep, M.D. 33

Senior VP in R&D:

Jean-Charles Soria PhD molecular Biol, MD

18.5% 34
Sanofi Paul Hudson Ba. Economics, honorary doctorate in business35

 

Executive VP, R&D:

John Reed, MD, PhD in Immunology35

14.51% 36
Bristol-Myers Squibb Giovanni Caforio MD.37

 

Chief Medical Officer: Samit Hirawat, MD.

Rupert Vessey:

Executive VP: R&D PhD molecular immunology 37

 

24.58% 38
Takeda Christophe Weber PhD. pharmacy and pharmacokinetics, Msc. pharmaceutical marketing, accounting, and finance39

 

 

Director

President, R&D:

Andrew Plump, MD.  Ph.D. in cardiovascular genetics 39

14.25% 40
AbbVie Richard A. Gonzalez No college degree. Practical experience in biochemistry research. Vice chairman and president, R&D:

Michael E. Severino, MD, Bsc biochem41

 

12.60% 42
Novartis Vasant Narasimhan Bsc. Biology, MD, Msc Public policy President, Biomedical research, James Bradner M.D.

President innovative medicine, Victor Bulto: Msc. Chemical engineering, health economics, and pharmaeconomics, MBA. Chief medical officer, John Tsai BEng. MD43

 

18.04% 44
Merck Robert M. Davis Ba Finance, MBA, Juris Doctor45

 

Executive VP and president of Merck Research Laboratories; Dean Li MD, PhD cardiology45 25.14% 46
Johnson & Johnson Joaquin Duato

Vanessa Broadhurst

Peter Fasolo

Joaquin: MBA, Master of international management

Vanessa: Ba, Master of Business Administration

Peter: PhD in organizational behavior, Msc. Industrial Psychology, Ba Psychology47

 

Executive VP, Chief Medical Safety Officer; William Hait MD. PhD Oncology

Executive VP, Pharmaceuticals R&D; Mathai Mammen MD. PhD Chemistry

15.69% 48
Pfizer Dr. Albert Bourla

Sally Susman

Payal Sahni Becher

Rady Johnson

Albert: Doctor of Veterinary Medicine (biotechnology)

Sally: Ba Government

Payal: Ba psychology, Msc Psychology

Rady: Accountant49

 

 

Chief Development Officer:

William Pao: MD. PhD oncology

Chief Scientific Officer, Worldwide R&D:

Mikael Dolsten; MD. PhD Tumor Immunology49

17.01% 50
Roche Dr. Severin Schwan, William N. (Bill) Anderson, Dr. Thomas Schinecker, Dr. Alan Hippe Severin: Ba economics, PhD law

William: Msc in management and chemical engineering

Thomas: Bsc genetics, Msc molecular biology, Phd molecular biology

Alan: Ba, Phd in administration51

 

 

CEO Roche Diagnostics; Dr. Thomas Schinecker; PhD in Molecular Biology51

 

23.563% 52

References:

  1. Aurora Webpage. Auroramj https://www.auroramj.com/#science.
  2. Definition of Core. Merriam-Webster Dictionary https://www.merriam-webster.com/dictionary/core?utm_campaign=sd&utm_medium=serp&utm_source=jsonld.
  3. Tilray Brands WebPage. https://www.tilray.com/.
  4. Rathi, A. Why scientists make bad entrepreneurs—and how to change that. Quartz (2015).
  5. Mintz, C. Science vs. Business: Who Makes A Better CEO? Life Science Leader (2009).
  6. Fuglie, K., King, J. & David Schimmelpfennig. Private Industry Investing Heavily, and Globally, in Research To Improve Agricultural Productivity. US Department of Agriculture, Economic Research Service (2012).
  7. Canopy Growth R&D expenses. https://ycharts.com/companies/WEED.TO/r_and_d_expense.
  8. Tilray R&D expenses. Ycharts https://ycharts.com/companies/TLRY.TO/r_and_d_expense.
  9. TerrAscend R&D expenses. Ycharts.
  10. Thomke, S. & Loveman, G. Act Like a Scientist. Harvard Business Review (2022).
  11. Knott, A. M. The Trillion-Dollar R&D Fix. Harvard Business Review (2012).
  12. Gulati, R., Nohria, N. & Wohllgezogen, F. Roaring Out of Recession. Harvard Business Review (2020).
  13. Soferman, R. Why You Shouldn’t Cut R&D Investments In Times Of Crisis And Recession. Forbes (2020).
  14. Madisch, I. Why I Hire Scientists, and Why You Should, Too. Scientific American (2018).
  15. Havn Life Sciences Inc. Announces Appointment of Gary Leong as Chief Science Officer. https://apnews.com/press-release/accesswire/science-business-life-sciences-inc-aphria-inc-319a516963144b308d146d97dee0dc69 (2020).
  16. Bruce Linton. Elite Biographies https://elitebiographies.com/biography/bruce-linton/.
  17. Canopy Growth Page . Ycharts https://ycharts.com/companies/CGC.
  18. Lee, A. 20 Things You Didn’t Know About Terry Booth. Money Inc (2020).
  19. Aurora Cannabis page. Ycharts https://ycharts.com/companies/ACB.
  20. Brendan Kennedy Profile. linkedin https://www.linkedin.com/in/kennedybrendan/.
  21. Christian Groh Profile. Bloomberg https://www.bloomberg.com/profile/person/17139193.
  22. Micheal Blue Profile. Bloomberg https://www.bloomberg.com/profile/person/18227502.
  23. Tilray Page. Ycharts https://ycharts.com/companies/TLRY.
  24. A Jonathan Sandelman Profile. zoominfo https://www.zoominfo.com/p/Jonathan-Sandelman/2245250.
  25. Dr. Michael Nashat Appointed President & CEO of TerrAscend. https://markets.businessinsider.com/news/stocks/dr-michael-nashat-appointed-president-ceo-of-terrascend-1012862002 (2018).
  26. TerrAscend Page. Ycharts https://ycharts.com/companies/TRSSF.
  27. Sebastien St-Louis Profile. Linkedin https://www.linkedin.com/in/sstlouis/?originalSubdomain=ca.
  28. HEXO Corp Page. Ycharts https://ycharts.com/companies/HEXO.
  29. Trevor Fencott Profile. bezinga.com https://www.benzinga.com/events/cannabis-conference/speakers/trevor-fencott/.
  30. Mark Catroppa Profile. linkedin https://www.linkedin.com/in/markcatroppa/.
  31. Monty Sikka Profile. linkedin https://www.linkedin.com/in/monty-sikka-3024a1a6/.
  32. Natasha Ryz Profile. crunchbase https://www.crunchbase.com/person/natasha-ryz.
  33. Senior Management Amgen Page. Amgen https://www.amgen.com/about/leadership.
  34. Amgen Stocks Page. YCharts https://ycharts.com/companies/AMGN.
  35. Sanofi Executive Team Page. https://www.sanofi.com/en/about-us/governance/executive-committee.
  36. Sanofi Stocks Page. Ycharts https://ycharts.com/companies/SNY.
  37. Bristol Myers Squibb Leadership Team. https://www.bms.com/about-us/leadership/leadership-team.html.
  38. Bristol Myers Squibb Stocks Page. YCharts.
  39. Takeda Executive Leadership Page. Takeda https://www.takeda.com/who-we-are/company-information/executive-leadership/.
  40. Takeda Pharmaceutical Co Stocks Page. YCharts.
  41. Abbvie Our Leaders Page. Abbvie https://www.abbvie.com/our-company/leadership.html.
  42. Abbvie Inc Stocks Page. YCharts https://ycharts.com/companies/ABBV.
  43. novartis executive committee page. novartis https://www.novartis.com/about/executive-committee.
  44. Novartis AG Stocks Page. YCharts https://ycharts.com/companies/NVS.
  45. Merck Executive team Page. Merck https://www.merck.com/company-overview/leadership/executive-team/.
  46. Merck Stocks Page. YCharts https://ycharts.com/companies/MRK.
  47. Johnson and Johnson Our Leadership Team Page. Johnson and Johnson https://www.jnj.com/leadership/our-leadership-team.
  48. Johnson and Johnson Stocks Page. YCharts https://ycharts.com/companies/JNJ/market_cap.
  49. Pfizer Executive Leadership Page. Pfizer https://www.pfizer.com/about/people/executives.
  50. Pfizer Inc Stocks Page. YCharts https://ycharts.com/companies/PFE.
  51. Roche Executive Committee Webpage. Roche https://www.roche.com/about/governance/executive-committee.
  52. Roche Holding AG Stock Page. YCharts https://ycharts.com/companies/RHHBY.

At Delic Labs, We Have a Dream: A Cannabis Better Future

By Dr. Markus Roggen, Amanda Assen, Dr. Eric Janusson
No Comments

Many people associate cannabis with eco-friendly, counter-cultural movements, but we know the environmental impacts of the cannabis industry are significant. Given the climate crisis, cannabis production companies have a responsibility to ensure future demands of the industry are met in an environmentally sustainable way. We also know that as the world is seeing the impacts of climate change, consumers are changing their spending habits 1. As a result, companies also have the financial incentive to seriously consider implementing more environmental policies, to align their interests with the interests of consumers. Unfortunately, restrictions on cannabis research and the legal industry create barriers to implementing many environmentally friendly alternatives in production. However, this does not give us an excuse to do nothing while we wait – there are many steps that can be taken while we work to overcome these barriers. Our team at Delic Labs aims to help companies ensure the environmental and economic sustainability of the cannabis industry. So, we did some research and developed the Cannabis Better Future (CBF) concept, a guide that considers the impacts of cannabis cultivation and processing on the environment. The pillars of CBF are:

  1. Use of renewable/recyclable materials in production

The packaging used for legal cannabis products is infamously excessive. A standard 3.5-grams of dried cannabis is estimated to come packaged in more than 70 grams of plastic. This seemingly redundant packaging is done to meet regulations surrounding cannabis packaging that often require single-use plastic with labels and warnings at specific sizes 2. Despite this, there is work being done to get biodegradable packaging approved in the industry.

More companies, such as Knot Plastic, are using plant-based materials to provide medical-grade biodegradable alternatives to single-use plastic 3. As members of the industry, we should support these companies and call for regulations to approve biodegradable packaging. As for immediate actions that can be taken, we can turn to companies that reduce the amount of plastic from the industry that ends up in landfills. The Tweed x TerraCycle Cannabis Packaging Recycling Program accepts all cannabis containers from licensed producers in Canada – free of charge – and melts down the plastic to create new products 4. This includes tins, plastic bags, tubes and bottles with child-proof caps. The program has saved more than 165,000 containers from ending up in landfills.

  1. Upcycle biomass waste

It is estimated that for every pound of cannabis harvested, up to 4.5 pounds of plant waste is generated 5. Cannabis biomass waste can be discarded in four different ways: via landfill, composting, in-vessel digestion or incineration 6. Cannabis bio-waste usually ends up in landfills because this is the cheapest method. However, landfill disposal represents a missed opportunity for companies to use biomass waste for economic and environmentally-friendly uses.

Converting biomass for other uses will drastically limit waste

To reduce landfill waste, some companies are looking at sustainable bio-circular solutions, where cannabis biomass is converted into something of industrial use such as compost, bio-plastics and paper packaging for cannabis products 7.  The easiest way to reuse cannabis biomass with current regulations in place is to upcycle it to produce compost and greywater that can be used for industrial cultivation 8. Currently, bleach is commonly used to remove THC from biomass, making it unfit to be used for these purposes 6. However, Micron Waste Technologies Inc. have shown enzymatic denaturation can be adopted on the industrial scale to remove THC from the biomass, resulting in reusable water and compostable matter 8. Turning to this alternative method would also reduce the amount of required fertilizer and replace bleach with a more environmentally-friendly solution.

  1. Recycle production side streams

Terpenes are the compounds in cannabis that give it distinctive aromas and flavors sought after by consumers.During the cannabis drying stage, over 30% of terpenes can be lost along with the water phase from the product 9. This terpene-containing water phase gets trapped in drying rooms and decarboxylation ovens and is usually thrown out. To reintroduce the terpenes in their products, companies usually purchase them 10.However, they instead could be recapturing terpenes that are otherwise going to waste, and re-introducing them into their products. Recapturing terpenes would not only reduce the production and shipment energy that goes along with purchased terpenes, but also the costs of buying them.

There are many other wasted by-products that can be recycled. Ethanol that has been used as extraction solvent can be reused as cleaning solvent, reducing the need to purchase ethanol separately for cleaning purposes. Further, the condensation caught in HVACs can be recycled to water plants.

  1. Optimize production energy efficiency
LED lights use less energy and omit less heat than other more traditional options

A study by Summers et al. 11 found that from producing one kilogram of dried cannabis flower, the emitted greenhouse gasses emissions range from 2,283 to 5,184 kg of CO2. Electricity used for indoor cultivation is the major culprit in producing these emissions. In fact, over $6 billion is spent annually to power industrial cannabis growth facilities in the U.S. alone12. Growing outdoors is significantly more energy efficient; however, non-auto flowering, high-THC cannabis plants depend on the specific timing of daylight (and darkness) to grow properly 13. Optimal conditions for these plants are not always achievable in outdoor setting. Meanwhile, auto-flowering plants that are hearty outdoors are generally lower in THC content 14. Promoting research into generating more stabilized cannabis cultivars may help outdoor growing be a more feasible solution. Given the recent work being done with genetically modified and transgenic plants, upregulating THC production in cannabis and increasing the heartiness in different climates is well within the realm of possibility 15–17.

In the meantime, cultivation facilities can do their part to maintain a controlled growth environment with reduced energy waste. Companies that are still using high-intensity sodium lights should consider switching to high-efficiency LED bulbs 12. These are a good alternative option as they produce less heat, and as a result, require less mechanical cooling. It has been shown that many plants, including cannabis, might even do better under blue-red LED lights 18,19. Growth under these conditions correlated with an increase in THC and CBD levels, and overall larger plants 18. In addition to low energy consumption, LED lamps have flexible mobility and a tunable spectrum range. This makes it possible to mediate the spectrum specifically for cannabis crops by controlling each spectral range and manipulating spectral quality and light intensity precisely. Finally, lights can also be brought closer to plants, to further reduce the amount of mechanical cooling needed.

  1. Utilize high-precision processes

Reducing energy use while maintaining production rates can only be done if the process is optimized. Our own research improves process optimization in the cannabis industry. A key component of industrial optimization is reducing wasted time on various machines. For cannabis producers, this machine “junk time” can accumulate when the instrumentation is not progressing the reaction.

Reducing energy use in this case means ensuring machines are not in operation if they are not progressing the reaction. For example, many companies spend approximately two hours on the decarboxylation step because decarboxylation is always complete after two hours 20; however, decarboxylations are often complete in as little as thirty minutes 21. Companies can save energy by installing a monitor on decarboxylation systems to stop reactions once they are complete.

Reducing the environmental impacts of the cannabis industry is crucial to combat the developing climate crisis. While lifting restrictions on cannabis research and mitigating stigmas surrounding the legal industry will be what ultimately paves the way for meaningful changes toward a sustainable industry, cannabis companies cannot wait for regulatory changes to occur before considering eco-friendly practices. As outlined by CBF, there are existing actions which all companies can take to reduce their carbon footprint immediately. Delic Labs, and many other companies we have noted, aim to support companies in making these decisions for a better future for cannabis.


References:

  1. Statista Research Department. Share of consumers worldwide who have changed the products and services they use due to concern about climate change in 2019. https://www.statista.com/statistics/1106653/change-made-consumer-bevaviour-concern-climate-change-worldwide/ (2021).
  2. Akeileh, O., Moyer, E., Sim, P. & Vissandjee Amarsy, L. Chronic Waste: Strategies to Reduce Waste and Encourage Environmentally-Friendly Packaging in Canada’s Legal Cannabis. https://www.mcgill.ca/maxbellschool/files/maxbellschool/policy_lab_2020_-_strategies_to_reduce_waste_and_encourage_environmentally-friendly_packaging_in_canadas_legal_cannabis_industry.pdf (2020).
  3. Bauder, P. Ry Russell of Knot Plastic️: 5 Things We Must Do to Inspire the Next Generation about Sustainability and the Environment. (2020).
  4. Waste360 Staff. Tweed, TerraCycle Take Cannabis Packaging Recycling Across Canada. (2019).
  5. Peterson, E. Industry Report: The State of Hemp and Cannabis Waste. CompanyWeek (2019).
  6. Commendatore, C. The Complicated World of Cannabis Waste Generation (Part One). Waste 360 (2019).
  7. Drotleff, L. Cannabis-based packaging and paper could reduce waste, promote sustainability. MJBiz Daily(2020).
  8. Waste 360 staff. Micron Secures U.S. Design Patent for Waste Treatment Tech. Waste 360 (2019).
  9. Challa, S. R. DRYING KINETICS AND THE EFFECTS OF DRYING METHODS ON QUALITY (CBD, TERPENES AND COLOR) OF HEMP (Cannabis sativa L.) BUDS. (2020).
  10. Erickson, B. Cannabis industry gets crafty with terpenes. chemical and engineering news (2019).
  11. Summers, H. M., Sproul, E. & Quinn, J. C. The greenhouse gas emissions of indoor cannabis production in the United States. Nature Sustainability 4, (2021).
  12. Reott, J. How Does Legalized Cannabis Affect Energy Use? Alliance to Save Energy (2020).
  13. When To Plant Cannabis Outside: A State By State Guide. aPotforPot.comhttps://apotforpot.com/blogs/apotforpot/when-to-plant-cannabis-outside-a-state-by-state-guide/ (2020).
  14. 15 Pros And Cons of Autoflowering Cannabis. aPotforPot.com https://apotforpot.com/blogs/apotforpot/15-pros-and-cons-of-autoflowering-seeds/ (2019).
  15. Ye, X. et al. Engineering the Provitamin A (β-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science 287, 303–305 (2000).
  16. Giddings, G., Allison, G., Brooks, D. & Carter, A. Transgenic plants as factories for biopharmaceuticals. Nature Biotechnology 18, 1151–1155 (2000).
  17. Hu, H. & Xiong, L. Genetic Engineering and Breeding of Drought-Resistant Crops. Annual Review of Plant Biology 65, 715–741 (2014).
  18. Wei, X. et al. Wavelengths of LED light affect the growth and cannabidiol content in Cannabis sativa L. Industrial Crops and Products 165, (2021).
  19. Sabzalian, M. R. et al. High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production. Agronomy for Sustainable Development 34, (2014).
  20. LunaTechnologies. Decarboxylation: What Is It and Why Is It Important? LunaTechnologies.
  21. Shah, S. et al. Fast, Easy, and Reliable Monitoring of THCA and CBDA Decarboxylation in Cannabis Flower and Oil Samples Using Infrared Spectroscopy. (2021).
Soapbox

User-Generated Data Brings Revenue: It’s Time for the Users to Get Some

By Dr. Markus Roggen, Amanda Assen, Dr. Tom Dupree
No Comments

You generate the product, you should benefit from it too.

If you are not paying for the service, you are the product. This pithy phrase is often heard in discussions about social media’s use of personal information and user-generated content. The idea can be traced back to a 1973 short film that critiques television’s impact on culture and politics. Although about television, the quote, “you are the end product delivered en masse to the advertiser,” still rings true when talking about major online corporations.

We have all seen it with big corporations. In the first three months of 2021, of Facebook’s $26.2B revenue, a whopping $25.4B was from advertising sales. However, the space for an advertisement to be delivered en masse to the public is not the only thing purchased from Facebook. Access to personal information such as your search history, likes and posts are also purchased by companies to determine which advertisements they should target you with.Access to user-generated data by advertisers has sparked privacy and ownership concerns regarding large internet platforms. The idea of being surveilled all the time is uncomfortable, and many large corporations like Facebook have royalty-free and transferable licenses to your posts.

Similarly, many websites in the cannabis industry gain value from information submitted by consumers. As an example, the website Leafly provides over 1.3 million consumer product reviews that are often used for purchasing decisions. These reviews play a role in attracting more people to websites that operate with a similar system to Leafly, and in turn advertising space to reach those people is sold. According to their About page, more than 4.5 million orders for advertising space are placed with businesses on Leafly each year, generating annually about $460 million in gross merchandise value. So, the users work for free to attract an audience to these websites for the advertisers, and the websites make money from advertisers.

Can we empower users with ownership of their content, data and participation in profits?

Frustrated social media users exclaiming “We are the product!” does nothing to change our reality. It is unlikely we will change how big corporations like Facebook work, but can we ensure users receive some of the benefits in our own cannabis industry? Many of these websites, especially those for medicinal cannabis, are designed to genuinely help users. Can we further increase this feeling of having a transaction with the websites rather than feel like we are being sold to advertisers? The world of NFTs may offer some guidance.

An NFT (or non-fungible token) acts as a digital certificate of authenticity. Unlike cryptocurrencies (like Bitcoin), each NFT is unique, so it cannot be exchanged or multiplied. They are kept on a blockchain system, which is a growing list of computationally secure ledgers. The blockchain allows proof of ownership to be established for the person with the NFT, and prevents others from being able to tamper with or claim ownership of the artwork, game, tweet or cat picture it is assigned to. Although non-exchangeable, NFTs can be traded on a digital marketplace, like how a physical piece of art can be auctioned.

While NFTs and cryptocurrencies are certainly not without controversy and flaws, an NFT-like system that provides users with proof of ownership for their data and grants them control over what is done with it may be the way of the future for websites in the cannabis industry. Just like Facebook, when it comes to sales, online display advertisements are some of the top revenue generators for websites in the cannabis industry that utilize user-generated content. With an NFT-like system, users could be granted a royalty for their content, which would obligate websites to give a portion of their profits to the users when their content is sold to an advertiser. Users may be able to have a portfolio of their generated content, have some control over who can access their content and who their personal data can be sold to.

Websites that are more focused on cannabis for medicinal use often pride themselves on being more patient-focused and professional – no pothead puns or crass logos. An NFT-like system might be especially beneficial for these companies, as it would further increase the emphasis of trust and respect for users. In this case, an NFT-like system could be used to assign ownership of reviews to individual website users. Since these reviews attract new people to these websites, when access to a user’s data is sold to advertisement companies, then a portion of that revenue is given to the people who created the reviews. The estimated amount of revenue that reviewers help to bring into the company can be calculated and distributed accordingly. While this may seem like it would cause a significant loss of revenue for the websites, the increased trust that would come with this system would likely promote more users, generating an overall increase in revenue and credibility. Users could become more engaged and spend more time writing reviews, increasing web traffic considerably. Advertisers would be more attracted to the larger audience and the prestige of having their advertisement on a well-respected site.

An NFT-like system could hold large internet corporations accountable.

The new normal is corporations on the internet making money from the content created by users. In return, users receive none of the monetary benefits and have their personal information shared with hundreds of businesses. An NFT-like system, although theoretical, may be able to empower users to hold large corporations accountable for what is done with user-generated data. It is unlikely we can change big companies like Facebook, but if adopted early, this may be plausible in our cannabis industry. This in turn may not only give more ownership to the website users, but could also benefit the websites, and the advertisers. Overall, the product should be the website and the services it provides. An NFT-like system might help promote this and could make users who generate value for the website partners in business.

extraction equipment

Moneybowl: How Data Analytics Can Improve Extraction Processes

By Dr. Markus Roggen, Sajni Shah, Stella Zhu
No Comments
extraction equipment

When data analytics was first introduced in the sports industry, it was met with a lot of criticism. But then it began to show results; a popular example being the story of Oakland Athletics Manager Billy Beane, depicted in the movie Moneyball starring Brad Pitt. In the cannabis industry today, we face familiar hurdles. Everyone is focused on extracting as much CBD oil as they can, but not many are optimizing the process. We even hear that data analytics is too difficult, that it does not help and no one has time for it. In contrast, the sports industry nowadays widely uses statistics and analytics, because it has proved to be effective. They use data analytics to choose their players for a team so that they have the best chance to win the championship. NBA teams have entire departments focused on data analytics, so why doesn’t the cannabis industry? Focusing on basketball, what if the approach taken to pick players for an all-star team was employed in the cannabis industry? Imagine your instruments as players and their parameters as their skills. Now, all you need is data analytics to help you decide how best to optimize your team. Paying attention to the numbers, could help you win in the cannabis industry.

extraction equipmentWhen thinking about players in basketball, one factor of interest is the “Players Offensive Rating”, which is the amount of points produced by a player per 100 possessions. In this scenario, you want the player to have a higher offensive rating as it means that they have a better chance of scoring points when they have the ball. Similarly, in cannabis production, you would want your instrument to yield as much product (points) per hour (possession) as possible as well. So, the cannabis extraction analogy for offensive rating is “Yield Per Hour”. By increasing the yield per hour, the instrument can extract more product in the same time frame, increasing overall output and reducing product cost per gram. In this scenario, the biggest extractor is not necessarily the fastest, and any supercritical COextractor will be slower than, for example, ethanol extractors.

Another important factor that’s considered in basketball is “Shooting Efficiency,” which looks at the number of successful baskets made by a player in comparison to the number of shots taken and where the shot was taken from. Having a player with a high shooting efficiency would result in a good chance for that team scoring points over their competitors. This principle is similar in cannabis, while a high yield (number of shots) is great, you also want a high purity (baskets made) of your target compounds or “Percent Purity”. This means you will get a higher percentage of the compounds you want, such as cannabinoids, for every gram of oil extracted. Here, the supercritical CO2 extractor shows its superiority over ethanol, as density modulation of the supercritical CO2 allows for the separation of terpenes or cannabinoids from the rest.You can see that a team that has a better synergy has a higher winning rate. For the same reason, the cannabis extraction process can be optimized by adjusting the parameters of the instrument. 

For one last example, let’s look at “Number of Steals” as well. This is the number of times a defensive player successfully tackles the ball from an opposing player before they manage to shoot a basket. If this is high, opponents have fewer opportunities to shoot and score points. Similarly, “Percent Recovery” in the cannabis industry is important to ensure that the target compounds in your flower are being extracted. The solvent should have the chance to extract the compounds (steal from the opposition), before the run ends (the opposition shoots). A high recovery gives a higher overall output for the materials that were input, generating more product overall. In theory, if you wait long enough every solvent can reach full recovery, but for supercritical CO2 in particular there is a practical ceiling around 80% recovery.

While thinking about these variables in isolation is the first step, it is just as important to see how the variables interplay with each other. A concept is introduced here called “synergy”. A team member must establish a good cooperation with the entire team according to their own characteristics. For example, taller and stronger players whose “Offensive Rating” is higher are more suitable for guards, while those with a high “Shooting Efficiency” are more suitable for forwards. You can see that a team that has a better synergy has a higher winning rate. For the same reason, the cannabis extraction process can be optimized by adjusting the parameters of the instrument. For example, if you increase the extraction speed, which is “Yield per Hour”, you may need to compromise on “Percent Purity” as the increased speed may not allow for the optimal extraction of target compounds. Similarly, you may also need to compromise on “Percent Recovery” as a slower extraction rate will do a better job at having a higher recovery. Thus, in order to improve the overall process of extracting oil, there needs to be a focus on analyzing the synergies between different factors to guarantee optimal parameters for your benefit.

These examples highlight some of the basic data analytics that can be conducted on your instruments. However, there’s still one challenge to consider, most professional NBA teams have entire departments just for data analytics. How can you possibly accomplish conducting these analytics for your entire cannabis LP in addition to your regular job roles? That’s where we come in. Other than the “Yield per Hour”, “Percent Purity” and “Percent Recovery” listed above, CBDV can perform customized data analysis based on your company’s data. Let our team help you integrate the “boring” and “half-baked” data, and present you with a visual and clear data analysis report. Let us help you lead your team to win that championship in cannabis!


Acknowledgements

  • David “Davey” Jones
  • Dr. Tara Zepel
EVIO labs photo
Soapbox

(L)Earning from Failure

By Dr. Markus Roggen, Soheil Nasseri
No Comments
EVIO labs photo

The spectacular rise and crash of the Canadian cannabis stock market has been painful to watch, let alone to experience as an industry insider. The hype around the market has vanished and many investors are left disappointed. Large sustainable gains simply haven’t materialized as promised. The producers are clearly suffering. They have consistently been shedding value as they’ve been posting losses every quarter. Stock prices have plummeted along with consumer confidence. Attempts to reduce the cash bleeds through mergers, acquisitions, layoffs, restructures, fund raises, among others, have not resulted in any significant recovery. In short, the current model of a cannabis industry has failed.

Dr. Markus Roggen, Founder of Complex Biotech Discovery Ventures (CBDV)

How could it have been different? What should the industry have done differently? What makes the difference between failure and success? A recent article published in Nature (Volume 575) by Yin et al. titled “Quantifying the Dynamics of Failure Across Science, Startups and Security” analyzes the underlying principles of success. The article studies success rates of many groups after numerous attempts across three domains. One of the domains being analyzed are startup companies and their success in raising funds through many attempts at investment acquisition. The authors point out that the most important factor that determines success is not relentless trying but is actually learning after each attempt. Learning allows successful groups to accelerate their failures, making minute adjustments to their strategy with every attempt. Learning behavior is also seen early in the journey. This means that groups will show higher chances of success early on, if they learn from their mistakes.

If you want to succeed, you need to analyze the current state, test the future state, evaluate performance difference and implement the improved state.

This also needs to happen in the cannabis industry. Producers have been utilizing inefficient legacy systems for production. They have shackled themselves to these inefficient methods by becoming GMP-certified too early. Such certifications prevent them from experimenting with different designs that would enhance their process efficiency and product development. This inflexibility prevents them from improving. This means they are setting themselves up for ultimate failure. GMP is not generally wrong, as it ensures product safety and consistency. Although, at this early stage in the cannabis industry, we just don’t yet have the right processes to enshrine.

How can cannabis producers implement the above-mentioned research findings and learn from their current situation? In an ever-changing business environment, it is companies that are nimble, innovative and fast enough to continually refine themselves that end up succeeding. This agility allows them to match their products with the needs of their consumers and market dynamics. booking.com, a travel metasearch engine, is the prime example of this ethos because they carry out thousands of experiments per year. They have embraced failure through rapid experimentation of different offerings to gauge user feedback. Experimentation has allowed booking.com to learn faster than the competition and build a stronger business.

Soheil Nasseri, Business Associate at Complex Biotech Discovery Ventures (CBDV)

At CBDV, we put the need for iterative experimentation, failure and improvements to achieve breakthroughs at the core of our company. We pursue data to guide our decisions, not letting fear of momentary failure detract us from ultimate success. We continuously explore multiple facets of complex problems to come up with creative solutions.

A good example of how failure and rapid innovation guided us to success is our work on decarboxylation. We were confronted by the problem that the decarboxylation step of cannabis oil was inconsistent and unpredictable. Trying different reaction conditions did not yield a clear picture. We realized that the most important obstacle for improvements was the slow analysis by the HPLC. Therefore, we turned our attention to developing a fast analysis platform for decarboxylation. We found this in a desktop mid-IR instrument. With this instrument and our algorithm, we now could instantaneously track decarboxylation. We now hit another roadblock, a significant rate difference in decarboxylation between THCA and CBDA. We needed to understand the theoretical foundation of this effect to effectively optimize this reaction. So, we moved to tackle the problem from a different angle and employed computational chemistry to identify the origin of the rate difference. Understanding the steric effect on rate helped us focus on rapid, iterative experimentation. Now, with everything in place, we can control the decarboxylation at unrivaled speeds and to the highest precision.

If producers want to regain the trust of the market, they must embrace their failures and begin to learn. They should decrease their reliance on inefficient legacy production methods and experiment with new ones to find what is right for them. Experimentation brings new ways of production, innovative products and happier customers, which will result in higher profits. Producers should strive to implement experimentation into their corporate cultures. This can be done in collaboration with research companies like CBDV or through development of inhouse ‘centers of excellence.’

From The Lab

I Was Wrong… und das ist auch gut so!

By Dr. Markus Roggen
3 Comments

I was wrong. And that’s a good thing! Based on all available data, I assumed that evaporating ethanol from a cannabis oil/ethanol solution would result in terpene loss. As it turns out, it doesn’t. There are so many beliefs and assumptions about cannabis: Cannabis cures cancer!1 Smoking cannabis causes cancer!2 Sativas help you sleep; Indicas make you creative!3,4 CBD is not psychoactive!5 But are these ‘facts’ backed by science? Have they been experimentally tested and validated?

I postulated a theory, designed experiments to validate it and evaluated the results. Simply putting “cannabis backed by science” on your label does not solve the problem. Science is not a marketing term. It’s not even a fixed term. The practice of science is multifaceted and sometimes confusing. It evolved from the traditional model of Inductivism, where observations are used in an iterative process to refine a law/theory that can generalize such observations.6 Closely related is Empiricism, which posits that knowledge can only come from observation. Rationalism, on the other hand, believes that certain truths can be directly grasped by one’s intellect.7 In the last century, the definition of science was changed from the method by which we study something, such as Inductivism or Rationalism, and refocused on the way we explain phenomena. It states that a theory should be considered scientific if, and only if, it is falsifiable.8 All that means is that not the way we study something is what makes it scientific, but the way we explain it.

I wonder how can we use empirical observations and rational deliberations to solve the questions surrounding cannabis? And more importantly, how can we form scientific theories that are falsifiable? Cannabis, the plant, the drug, has long been withheld from society by its legal status. As a result, much of what we know, in fact, the entire industry has thrived in the shadows away from rigorous research. It’s time for this to change. I am particularly concerned by the lack of fundamental research in the field. I am not even talking about large questions, like the potential medical benefit of the plant and its constituents. Those are for later. I’m talking about fundamental, mundane questions like how many lumens per square centimetre does the plant need for optimal THC production? What are the kinetics of cannabis extraction in different solvents? What are the thermodynamics of decarboxylation? Where do major cannabinoids differ or align in terms of water solubility and viscosity?

The lack of knowledge and data in the cannabis field puts us in the precarious position of potentially chasing the wrong goals, not to mention wasting enormous amounts of time and money. Here’s a recent example drawn from personal experience:Certainly, I cannot be the only one who has made an incorrect assumption based on anecdotes and incomplete data?

Some of the most common steps in cannabis oil production involve ethanol solutions. Ethanol is commonly removed from extraction material under reduced pressure and elevated heat in a rotary evaporator. I expected that this process would endanger the terpenes in the oil – a key component of product quality. My theory was that volatile terpenes9 would be lost in the rotary evaporator during ethanol10 removal. The close values of vapor pressure for terpenes and ethanol make this a reasonably assumed possibility.11 In the summer of 2018, I finally got the chance to test it. I designed experiments at different temperatures and pressures, neat and in solution, to quantify the terpene lost in ethanol evaporation. I also considered real life conditions and limitations of cannabis oil manufacturers. After all the experiments were done, the results unequivocally showed that terpenes do not evaporate in a rotary evaporator when ethanol is removed from cannabis extracts.12 As it turns out, I was wrong.

We, as an industry, need to start putting money and effort into fundamental cannabis research programs. But, at least I ran the experiments! I postulated a theory, designed experiments to validate it and evaluated the results. At this point, and only this point, can I conclude anything about my hypothesis, even if that is that my working theory needs to be revised. Certainly, I cannot be the only one who has made an incorrect assumption based on anecdotes and incomplete data?

There is a particular danger when using incomplete data to form conclusions. There are many striking examples in the medical literature and even the casual observer might know them. The case of hormone replacement therapy for menopause and the associated risks of cardiovascular diseases showed how observational studies and well-designed clinical trials can lead to contradicting results.13 In the thirties of the last century, lobotomy became a cure-all technique for mental health issues.14 Dr. Moniz even won the Nobel Prize in Medicine for it.15 And it must come as no surprise when WIRED states “that one generation’s Nobel Prize-winning cure is another generation’s worst nightmare.”16 And with today’s knowledge is impossible to consider mercury as a treatment for syphilis, but that is exactly what it was used as for many centuries.17 All those examples, but the last one in particular should “be a good example of the weight of tradition or habit in the medical practice, […] of the necessity and the difficulties to evaluate the treatments without error.”18 There is the danger that we as cannabis professionals fall into the same trap and believe the old stories and become dogmatic about cannabis’ potential.

We, as an industry, need to start putting money and effort into fundamental cannabis research programs. That might be by sponsoring academic research,19 building in-house research divisions,20 or even building research networks.21 I fully believe in the need for fundamental cannabis research, even the non-sexy aspects.22 Therefore, I set up just that: an independent research laboratory, focused on fundamental cannabis research where we can test our assumptions and validate our theories. Although, I alone cannot do it all. I likely will be wrong somewhere (again). So, please join me in this effort. Let’s make sure cannabis science progresses.


References

  1. No, it does not. There are preliminary in-situ studies that point at anti-cancer effects, but its more complicated. The therapeutic effects of Cannabis and cannabinoids: An update from the National Academies of Sciences, Engineering and Medicine report, Abrams, Donald I., European Journal of Internal Medicine, Volume 49, 7 – 11
  2. No, it does not. National Academies of Sciences, Engineering, and Medicine. 2017. The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research. Washington, DC: The National Academies Press. https://doi.org/10.17226/24625.
  3. No, it does not. The chemical profile of the plant dictates the biological effects on humans, not the shape of the leaf.  Justin T. Fischedick, Cannabis and Cannabinoid Research, Volume: 2 Issue 1: March 1, 2017
  4. Indica and Sativa are outdated terms. Piomelli D, Russo EB. The Cannabis sativa versus Cannabis indica debate: An Interview with Ethan Russo, MD. Cannabis Cannabinoid Res 2016; 1: 44–46.
  5. No, it is. CBD’s supposed “calming effects” is indeed a psychoactive effect. However, it is not intoxicating like THC. Russo E.B., Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects.Br. J. Pharmacol. 2011; 163: 1344-1364
  6. As attributed to Francis Bacon.
  7. See the work by philosopher Baruch Spinoza.
  8. As theorized by Karl Popper.
  9. Monoterpenes have a vapor pressure in the low to mid hundreds of Pascals at room temperature.
  10. Vapor pressure of 5.95 kPa at 20˚C.
  11. Furthermore, there is always the possibility of azeotropes in complex mixtures. Azeotropes are mixtures of two or more liquids that have different boiling points individually, but in mixture boil together.
  12. Terpene Retention via Rotary Evaporator Application Note, Heidolph North America
  13. https://www.pharmaceutical-journal.com/research/review-article/establishing-the-risk-related-to-hormone-replacement-therapy-and-cardiovascular-disease-in-women/20202066.article?firstPass=false
  14. https://psychcentral.com/blog/the-surprising-history-of-the-lobotomy/
  15. https://en.wikipedia.org/wiki/António_Egas_Moniz
  16. https://www.wired.com/2011/03/lobotomy-history/
  17. https://www.infezmed.it/media/journal/Vol_21_4_2013_10.pdf
  18. https://www.ncbi.nlm.nih.gov/pubmed/11625051
  19. Canopy Growth funds a professorship of cannabis science at UBC. Tilray collaborates with UCSD on a phase I/II clinical trial.
  20. For examples see: NIBR, PMISCIENCE.
  21. For examples see: CEMI, theAIRnet, Future Sky.
  22. Research that does not lead to short-term stock value spikes but long-term progress
Soapbox

Clear vs. Pure: How Fallacies and Ignorance of Extraction Misrepresent the Cannabis Flower

By Dr. Markus Roggen
16 Comments

Demand for cannabis extracts, in particular vaping products, is at an all-time high. People want good oil, and they want to know something about the quality of it. It is therefore time to take a step back and consider the process from plant to cartridge. What is the current industry standard for cannabis extraction, what constitutes quality and where might we need to make some adjustments?

Right now, “clear” oil is hot. Customers have been led to believe that a pale gold extract is synonymous with the best possible cannabis concentrate, which is not necessarily the case. Producing a 95% pure THC extract with a translucent appearance is neither a great scientific feat nor a good representation of the whole cannabis flower. Moreover, it runs counter to the current trend of all-natural, non-processed foods and wellness products.

“My carrots are organic and fresh from the farmers market, my drink has no artificial sweeteners and my honey is raw, but my cannabis oil has undergone a dozen steps to look clear and still contains butane.”Cannabis is a fascinating plant. It is the basis of our livelihood, but more importantly, it enhances the quality of life for patients. The cannabis plant offers a plethora of medicinally interesting compounds. THC, CBD and terpenes are the most popular, but there are so many more. As of the most recent count, there are 146 known cannabinoids1. Cannabinoids are a group of structurally similar molecules2, including THC and CBD, many of which have shown biological activity3.

Then there are terpenes. These are the smaller molecules that give cannabis its distinct smell and flavor, over 200 of which have been identified in cannabis4. But wait, there’s more. The cannabis plant also produces countless other metabolites: flavonoids, alkaloids, phenols and amides5. All these components mixed together give the often-cited entourage effect6,7.

Current industry standards for cannabis oil extraction and purification stand in marked contrast to the complexity of the plant’s components. Due to an unsophisticated understanding of the extraction process and its underlying chemistry, cannabis oil manufacturers frequently produce oil of low quality with high levels of contamination. This necessitates further purifications and clean up steps that remove such contaminants unfortunately along with beneficial minor plant compounds. If one purifies an extract to a clear THC oil, one cannot also offer the full spectrum of cannabinoids, terpenes and other components. Additionally, claiming purities around 95% THC and being proud of it, makes any self-respecting organic chemist cringe8.

Precise control of extraction conditions leads to variable, customized concentrates. THC-A crumble, terpene-rich vape oil, THC sap (from left to right).

The labor-intensive, multi-step extraction process is also contrary to “the clean-label food trend”, which “has gone fully mainstream”9. Exposing the cannabis flower and oil to at least half a dozen processing steps violates consumer’s desire for clean medicine. Furthermore, the current practice of calling supercritical-CO2-extracted oils solvent-less violates basic scientific principles. Firstly, CO2 is used as a solvent, and secondly, if ethanol is used to winterize10, this would introduce another solvent to the cannabis oil.

We should reconsider our current extraction practices. We can offer cannabis extracts that are free of harmful solvents and pesticides, give a better, if not full, representation of the cannabis plant and meet the patients’ desire for clean medicine. Realizing extracts as the growth-driver they are11 will make us use better, fresher starting materials12. Understanding the underlying science and learning about the extraction processes will allow us to fine-tune the process to the point that we target extract customized cannabis concentrates13. Those, in turn, will not require additional multi-step purification processes, that destroys the basis of the entourage effect.

The cannabis industry needs to invest and educate. Better extracts are the result of knowledgeable, skilled people using precise instruments. Backroom extraction with a PVC pipe and a lighter should be horror stories of the past. And only when the patient knows how their medicine is made can they make educated choices. Through knowledge, patients will understand why quality has its price.

In short, over-processing to make clear oil violates both the plant’s complexity and consumers’ desires. Let us strive for pure extracts, not clear. Our patients deserve it.


[1] Prof. Meiri; lecture at MedCann 2017

[2] ElSohly, Slade, Life Sciences 2005, 539

[3] Whiting, et. al., JAMA. 2015, 2456

[4] Andre, Hausman, Guerriero, Frontiers in Plant Science 2016, 19

[5] Hazekamp, et. al., Chemistry of Cannabis Chapter 3.24; 2010 Elsevier Ltd.

[6] Ben-Shabat, et al.; Eur J Pharmacol. 1998, 23

[7] Mechoulam, et al.; Nat Prod Rep. 1999, 131

[8] Medical and Research Grade chemicals are generally of purities exceeding 99.9%

[9] Bomgardner, Chemical & Engineering News 2017, 20

[10] Winterization is the industry term for what is correctly referred to as precipitation.

[11] Year-over changes to market shares in Colorado 2015 to 2016: Concentrates 15% to 23%; Flower 65% to 57%, BDS Analytics, Marijuana Market Executive Report, 2017

[12] Further reading about the whole extraction process: B. Grauerholz, M. Roggen; Terpene and Testing Magazine, July/Aug. 2017

[13] Further reading about optimizing CO2 extraction: M. Roggen; Terpene and Testing Magazine, May/June 2017, 35